
Scheduling Tasks with Communication

Delays on Parallel Processors
JORGE URRUTIA AND NEJIB ZAGUIA
Department of Computer Science
University of Ottawa
Ottawa, Ontario, CANADA

ABSTRACT
Let Jn={v1,...,vn} be a set of n jobs to be executed and E a set of

precedence constraints on Jn. Assume that we have available a set
Mk={m1,...,mk} of k identical machines that are to execute the jobs in
Jn such that the time needed by any machine to execute each job in Jn is
one unit.

Our main result in this paper is to give an O(n log2(n)) algorithm to
find an optimal scheduling with communication delays on sets Jn of tasks
for which their precedence constraints induce a tree order on Jn, i.e. an order
P(Jn,<) on Jn such that the covering graph of P(Jn,<) is a tree. A
communication delay is the time it takes for some information to be
transferred between two different machines mi and mj of Mk, say from
mi to mj before mj can start processing a certain job.

1. Introduction

Let Jn={v1,...,vn} be a set of n jobs to be executed and E a set of precedence
constraints on Jn. Assume that we have available a set Mk={m1,...,mk} of k identical
machines that are to execute the job in Jn and that the time needed by any machine to
execute each job in Jn is one unit of time. Given Jn and Mk, a scheduling f of Jn is a
function f:JnÆMkxN that assigns to each job vi Œ T a machine m(vi) and a completion time
c(vi)≥1 such that the following conditions are satisfied:

i) no two jobs are scheduled in the same machine at the same time

ii) if there is a precedence relation in E that dictates that vi has to be executed
before vj, then the completion time c(vi) of vi is smaller than the completion
time c(vj) of vj.

In this paper we study schedulings in which another restriction called
communication delays are considered. Suppose that two jobs vs and vt are such that vs has
to be completed before vt. If vs and vt are executed in different machines, say mi and mj
respectively, some information has to be passed from mi to mj. The time it takes to transmit
that information from mi to mj is called a communication delay.

Accordingly, we say that a scheduling f is a scheduling with communication delays
if in addition to i) and ii) it also satisfies:

iii) if vi has to be executed before vj and m(vi)≠m(vj) then c(vj)≥c(vi)+2

 The set of precedence relations E on the elements of Tn induces a partial order
P(Jn,<) on the elements of Tn in which a job vi is smaller than a job vj if there is a
precedence constraint that dictates that job vi has to be executed before job vj; we will denote
this by vi < vj.

A precedence constraint vi < vk in P(Jn,<) is redundant if there is a job vj such that
vi < vj and vj < vk. A precedence constraint vi < vk is essential if there is no job vj such that
vi < vj and vj < vk. The covering graph of P(Jn, <) is the graph with vertex set Jn in which vi
is connected to vj if vi < vj is an essential precedence constraint of P(Jn,<).

It is known that scheduling with communication delays is NP-complete for sets of
tasks with arbitrary precedence relations, even for the case when we use two processors [6].
Nevertheless, there are some special cases for which polynomial time scheduling algorithms
exist [1,6].

Our main result in this paper is to give an O(n log2(n)) algorithm to find an optimal
scheduling with communication delays on partial orders P(Jn,<) such that the covering
graph of P(Jn,<) is a tree using an arbitrary number of machines.

2. Terminology and Definitions

An ordered set P(Jn,<) on a set Jn of n elements consists of a binary relation < over
the set Jn that satisfies:

(a) For any vi, vj, vk ŒJn such that vi < vj and vj < vk we have vi < vk
(transitivity), and

(b) vi </ vi (antisymmetry).

Given two elements vi, vj ŒJn, we say that vi is a lower cove of vj if vi < vj and there
is no element vk of Jn different from vi and vj such that vi < vk < vj. The covering graph of
P(Jn,<) is the graph with vertex set Jn in which two vertices vi and vj are adjacent if vi is a
lower cover of vj or, vj is a lower cover of vi.

It is customary to represent an ordered set P(Jn,<) on the plane by drawing its
covering graph on the plane in such a way that the elements of P(Jn,<) are represented by
small circles in such a way that if vi is lower cover of vj then vi is joined to vj with a strictly
monotonically increasing curve from vi to vj. See Figure 1.

v1v2v3

v4

v7

v6
v5

Notice that v is smaller than v since

v < v and v < v .
1

5 75

7

1

A tree ordered set

v1v2v3

v4

v7

v6
v5

(a) (b)

Figure 1

An equivalent formulation of iii), and one that will be more useful to us is the
following:

iii') If a task vi is scheduled with termination time c(vi), then at most one task
vj>vi can be scheduled with completion time c(vi)+1 and at most one task
vk < vi can be scheduled with completion time c(vi)-1.

To see that iii) and iii') are equivalent, simply notice that by iii) if a task vi is
completed at time c(vi), then the machine ms that executed vi can complete only one job vj >
vi at time c(vi)+1. Any other job vk > vi executed by a machine mt different from ms is
delayed by at least one extra unit due to a communication delay. Similarly, at most one job
vj < vi can be completed at time c(vi)-1.

Given a scheduling f with communication delays of an ordered set P(Jn,<) we define
the completion time C(f) of f as the largest completion time in f over all of the elements of
Jn. A scheduling f is optimal if its completion time C(f) is the smallest possible over all
possible schedulings of P(Jn,<). C(f) will be called the optimal scheduling time of P(Jn,<).

v1v2v3

v4

v7

v6
v5

An optimal scheduling of a tree order using 3 machines

m , m and m .1 2 3

c(v)=1

c(v)=1

c(v)=1

c(v)=2

1

2

3

4

c(v)=3

c(v)=2

c(v)=4

5

6

7

m(v)=m

m(v)=m

m(v)=m

2

3

2

5

6

7

1

2

3

4

m(v)=m

m(v)=m

m(v)=m

m(v)=m

1

2

3

1

Figure 2

In Figure 2, we show an optimal scheduling with delays for a tree. Notice that by x)
v5 cannot be assigned completion time 2. To see this, notice that by iii') at most one of v1, v2
and v3 can have completion time c(v5)-1, and since c(vi)≥1, i=1,2,3 the completion time of
v5 is at least 3. Also, it is possible to assign to v7 completion time c(v7) = c(v5) + 1 since
the same machine m2 executes both jobs.

3. Finding Optimal Schedulings with Communication Delays for Tree-Orders

 In this section we will develop a O(n log2(n)) algorithm to find optimal schedulings
with communication delays for tree orders. To avoid carrying cumbersome notation, we
shall refer to optimal schedulings of trees, not tree orders.

It is easy to see that for the case when the number of machines available is at least
the number of jobs to be performed, the most important parameter to take into consideration
is the completion time. All we have to keep in mind is that, under our assumptions, if vi < vj
and c(vj)=c(vi)+1, then by iii'), both of these tasks are processed by the same machine.
Otherwise we may assume that vi and vj are processed by different machines. In view of our
previous discussion and to ease the presentation of our results, in what follows, we will
concentrate only in the completion times of our tasks and ignore the machines assigned to
our tasks.

Our main objective in this section is to prove the following theorem:

Theorem 1: Optimal scheduling with communication delays in tree orders P(Jn,<) with
n elements using at most n machines can be found in O(n log2(n)) time.

In order to prove our result we need to introduce some concepts:

A scheduling f for P(Jn,<) is called an a schedule if 1 ≤ c(vi) ≤ a for all the
elements of Jn. Let vi be an element of Jn and suppose that we have an a-schedule of
P(Jn,<). We define Min(a, P(Jn,<), vi) to be the earliest completion time that can be assigned
to vi over all a-schedules of P(Jn,<). Similarly we can define Max(a, P(Jn,<), vi). In Figure
2(a) we have a tree order P(J10,<) with a 6-schedule. In Figure 2(b) we have a different 6-
schedule of P(J10,<) in which Max(6, P(J10,<), v) is achieved and in Figure 2(c) Min(6,
P(J10,<), v) is achieved.

1 1 1 1

3

6

3

4

1

5u

1 1 1 1

3

6

3

5

3

4u

1 1 1 1

3

6

3

4

1

4u

v v v

(b) (c)(a)

Figure 3

We will prove that given an a-schedule of a tree order P(Jn,<) and an element vi of
Jn we can develop two procedures FMIN(a, P(Jn,<),vi) and FMAX(a, P(Jn,<),vi) that in
linear time obtain new a-schedules for P(Jn,<) such that the completion time of vi is
Min(a, P(Jn,<), vi) or Max(a, P(Jn,<), vi) respectively.

Some results will be needed to develop our procedures.

Lemma 1: Let P(Jn,<) be a tree order with an a-scheduling and vi be an element of P. Then
there is an a-schedule of P(Jn,<) in which the completion time of vi is Min(a, P(Jn,<), vi)
(respectively Max(a, P(Jn,<), vi)) such that the termination time of any lower (resp. upper)
covers vj of vi is Min(a, P(Jn,<), vj) (resp. Max(a, P(Jn,<), vj)).

Proof: Let us consider an a-schedule f of P(Jn,<) in which the completion time of vi is
Min(a, P(Jn,<), vi). Suppose that there is a lower cover vj of vi that has a completion time
greater than Min(a, P(Jn,<), vj). Consider a different a-schedule f' of P(Jn,<) such that the

completion time of vj in f' is Min(a, P(Jn,<), vj). Consider the covering graph T of P(Jn,<).
Since P(Jn,<) is a tree order, T is a tree. When we delete from T the edge connecting vj to vi,
we split T into two subtrees, one, Tj containing vj and the other Ti containing vi. Let Pj(Sj,<)
be the tree order induced in P(Jn,<) by the set of all the vertices of Tj. Let f" be the schedule
obtained from f and f' as follows: If an element vk of Jn is not a vertex of Tj assign to vk the
completion time it had in f; if vk is a vertex of Ti then assign to vk the completion time it has
in f'. It is easy to see that f" is a valid a-schedule for P(Jn,<). A similar argument can be
applied to Max(a, P(Jn,<), vj) for the case when vj is an upper cover of vi and we seek to
maximize the completion time of vi in an a-schedule of P(Jn,<).

QED

Lemma 2: Let vi be an element of Jn and suppose we have an a-schedule f of P(Jn,<)
such that:

a) For all the lower covers of vj of vi the schedule assigned to vj by f is Min(a,
P(Jn,<), vj)

and
b) If vj lower cover of vi and us is an upper cover of vj different from vi the

completion time of us is Max(a, P(Jn,<), us).

Then Min(a, P(Jn,<), vi) can be calculated as follows:

Let b={Min(a, P(Jn,<), vj): vj is a lower cover of vi}. Then if there are at least two
lower covers vj and vk of vi such that Min(a, P(Jn,<), vj)=Min(a, P(Jn,<), vk)=b then the
earliest completion time Min(a, P(Jn,<), vi) of vi is b + 2.

Proof: Suppose then that there is only one lower cover vj of vi such that b=Min(a, P(Jn,<),
vj), i.e. for any lower cover vk of vi different from vj we have Min(a, P(Jn,<), vk) < b. Then
if the completion times Max(a, P(Jn,<), us) in f of all the upper covers of vj are at least b +
2, then Min(a, P(Jn,<), vi)=b +1, otherwise Min(a, P(Jn,<), vi)=b +2. To prove this, all we
need to do is to notice that if the completion time Max(a, P(Jn,<), uk) in f of one upper
cover of vj is exactly b + 1, then the machine that executes vj is the same that executes uk
in f, and thus the earliest completion time Min(a, P(Jn,<), vi) is b + 2, otherwise we can
assign to vi completion time b + 1, which is clearly the earliest completion time for vi over
all a-schedules of P(Jn,<).

A similar argument holds for maximizing the completion time of an element vi of
P(Jn,<). One more definition will be needed before we can proceed to give two recursive

procedures that given an a-schedule f of a tree order P(Jn,<) will enable us to calculate
Min(a, P(Jn,<), vi) and Max(a, P(Jn,<), vj).

QED

Since P(Jn,<) is a tree order, the covering graph T of P(Jn,<) is a tree. Let ei,j=vi-vj
be an edge of T. Then T-ei,j consists of two subtrees Ti and Tj of T such that vi is a vertex
of Ti and vj is a vertex of Tj. Further let Si={vkŒJn: vk is a vertex of Ti} and Sj={vkŒJn:
vk is a vertex of Tj}. We now define P(Si,<) and P(Sj,<) as the suborders of P(Jn,<)
induced by Si and Sj respectively (see Figure 4). Clearly the covering graphs of P(Si,<) and
P(Sj,<) are Ti and Tj respectively. We can now describe FMIN and FMAX.

v

n

i

vj

P(J ,<) jP(S ,<)
iP(S ,<)

vj

vi

Figure 4

Procedure FMIN(a, P(Jn,<), vi)
If v is a minimal element of P(Jn,<) then

Min(a, P(Jn,<), vi)=1 and c(v)=1
Else

For each lower cover vj of vi in P(Jn,<) calculate bj=Min(a, Pj(Sj,<), vj)
using FMIN(a, Pj(Sj,<), vj).
Let b=Max{bj: vj is a lower cover of vi}
If at least two bj achieve the maximum value b in {b1,...,bm} then

Min(a, P(Jn,<), v1) =b+2, c(v)=b+2
else

Let vj be the unique lower cover of vi such that b=bj=Min(a,
Pj(Sj,<), vj).

For each upper cover vk of vj calculate dk=Max(a, Pk(Sk,<), vk}
using FMAX(a, Pk(Sk,<), uj)
if d ≥b+2 then

Min(a, P(Jn,<), vi)=b+1, c(v)=b+1

else
Min(a, P(Jn,<), vi)=b+2

End if.
EndFMIN.

Procedure FMAX(a, P(Jn,<), vi)
If v is a maximal element of P(Jn,<) then

Max(a, P(Jn,<), vi)=a and c(v)=a

Else
For each upper cover vj of vi in P(Jn,<) calculate bj=Max(a, Pj(Sj,<), vj)
using FMAX(a, Pj(Sj,<), vj).
Let b=Min{bj: vj is an upper cover of vi}
If at least two bj achieve the minimum value b in {b1,...,bm} then

Max(a, P(Jn,<), v1) =b-2, c(v)=b-2
else

Let vj be the unique upper cover of vi such that b=bj=Max(a,
Pj(Sj,<), vj).

For each lower cover vk of vj calculate d=Min(a, Pk(Sk,<), vk}
using FMIN(a, Pk(Sk,<), uj)
if d ≤b-2 then

Max(a, P(Jn,<), vi)=b11, c(v)=b-1
else

Min(a, P(Jn,<), vi)=b-2
End if.

EndFMAX.

Complexity analysis and correctness of the procedures

We first prove the following lemma:

Lemma 3: Given an a-scheduling of P(Jn,<) and a vertex vi of P(Jn,<), procedures
FMIN(a, P(Jn,<),$vi) and FMAX (a , P(Jn,<), vi) correctly minimize (maximize) the
completion time c(vi) of a vertex vi over all a-schedulings of P(Jn,<).

Proof: Our proof is by induction on the number of elements in Jn for both of FMIN(a,

P(Jn,<), vi) and FMAX(a, P(Jn,<), vi).

If Jn has one element, then our procedures work correctly.

Let us assume that both of FMIN(a, P(Jn,<), vi) and FMAX(a, P(Jn,<), vi) work
correctly for tree orders P(Jn,<) with less than n vertices, n≥2 and let us prove that they work
for tree orders with n vertices.

Let P(Jn,<) be a tree with n elements, n≥2, and let vi be an element of P(Jn,<). Let us
consider a a-schedule f' of P(Jn,<) for which the completion time c'(vi) of vi in f' is Min(a,
P(Jn,<), vi).

Consider any a-schedule f of P(Jn,<). We shall prove that if we apply
FMIN(a,P(Jn,<), vi) to f, the completion time c(vi) assigned to vi by MIN(a,P(Jn,<), vi) is
smaller than or equal to c'(vi). Let vj be a lower cover of vi in P(Jn,<) and c(vj) be the
completion time of vj in f. Clearly f induces a valid a-schedule in P(Sj,<) and since P(Sj,<)
has less elements that P(Jn,<) when during the execution of FMIN(a,P(Jn,<), vi) a recursive
call is made to FMIN(a, P(Sj,<), vj), the completion time bj assigned to vj is Min(a, P(Sj,<),
vj) over all possible a-schedules of P(Sj,<).

We now show that Min(a, P(Sj,<), vj) as calculated here is exactly Min(a, P(Jn,<),
vj). To show this, consider a scheduling f" of P(Jn,<) such that the completion time c"(vj) of
vj is exactly Min(a, P(Sj,<), vj). By the same argument as before, the completion time
assigned to vj when we apply FMIN(a, P(Sj,<), vj) to f" is the smallest over all possible a-
schedules of P(Sj,<), i.e. the completion time assigned ti vj has to be bj. Thus bj ≤c"(vj)
which by assumption is Min(a, P(Jn,<), vj). Our claim now follows.

Using similar arguments, we can now prove that if vk is an upper cover of vj
different from vi then if we apply FMAX(a,P(Sk,<), vk) to the subtree order of P(Sk,<)
obtained when we delete from the covering graph T of P(Jn,<) the edge vj-vk the completion
time assigned to vk by FMAX(a,P(Sk,<), vk) is exactly Max(a, P(Jn,<), vk). It now follows
by Lemma 2 that the completion time assigned to vi by FMIN(a, P(Jn,<), vi) is exactly
Min(a, P(Jn,<), vi). A dual argument applies now for the procedure FMAX(a,P(Sk,<), vk).

QED

We now prove:

Lemma 4. FMIN(a, P(Jn,<), vi) and FMAX(a, P(Jn,<), vi) work in O(n) time, where n is
the number of elements of Jn.

 Proof: Let g(a, P(Jn,<), vi) be the number of steps FMIN(a, P(Jn,<), vi) takes
(FMAX(a, P(Jn,<), vi). To execute FMIN(a, P(Jn,<), vi), we first calculate for all the lower
covers vj of vi bi=Min(a, Pj(Sj), vj) using FMIN(a, P(Jn,<), vi). After this is done, Min(a,
P(vi), vi) is found in O(k) time using Lemma 2, where k is the number of lower covers of
vi. Then:

(a, T, v)= O(k) + Â
i=1$

$ k $
$f(a,Ti,$ui)

which is O(E), where E is the set of edges of T. However T is a tree, and thus O(E) is
linear which proves our result.

QED

We now develop a recursive divide and conquer algorithm to find optimal
schedulings in tree orders in O(n log2n). To this end we need the following result known as
the one-third two-thirds theorem:

Theorem 2: Let T be any tree. Then there is a vertex v of T such that all of the
components of T-v have at most 2n/3 vertices. Moreover, v can be found in linear time.

Consider a vertex v i of a tree order P(Jn,<), with lower covers say {vj,...,vk} and
upper covers {vs,...,vt}. Let Plow(vi) and Pupp(vi) be the subtrees of P(Jn,<) containing vi
obtained by deleting all the edges joining vi to its upper covers (resp. lower covers) (see
Figure 5).

nP(J ,<)

vivi
vi

low high
P (v) P (v)i i

Figure 5

Given a tree order T our algorithm to find an optimal schedule for a tree order T
follows the outline:

Algorithm OPTTREE

1) Find a vertex vi of P(Jn,<) as in Theorem 2.

2) For every vj lower or upper cover of vi obtain an optimal schedulings for
P(Sj,<), with completion time bj.

3) Using these optimal schedulings, obtain optimal schedulings for Plow(vi) and
Pupp(vi)

4) Merge the optimal schedulings for for Plow(vi) and Pupp(vi) into an optimal
scheduling for P(Jn,<).

Due to the choice of vi, if we can show how to achieve Step 3 in linear time and Step
4 in O(n log n) time, it immediately follows that our algorithm OPTREE runs in O(n log2n)
time.

We now prove that Step 3 can be achieved in linear time.

Lemma 5: Suppose that for every lower (upper) cover vj of vi we have an optimal
scheduling for P(Sj,<) with completion time bj. Then optimal schedulings for Plow(vi)
(resp. Pupp(vi)) can be obtained in linear time.

Proof: Suppose that the lower covers of vi are vk,...,vm. Let b=max{bk,...,bm}. Clearly the
optimal completion time for time Plow(vi) can not be smaller than b. For each lower cover vj
of vi in P(Jn,<) find a b-schedule for P(Sj,<) which minimizes the completion time aj of vj.
This can be achieved in linear time using MIN(b, P(Sj), vj). Let a'=Max{ak,...,am}. If
a'≤b-2 then we can assign to v termination time a, thus achieving an b-scheduling of
Plow(vi) which has optimal termination time.

If a'=b-1, two cases arise:

1) a' is achieved by at least two elements of {ak,...,am}. Then by condition
iii) the completion time c(vi) of vi has to be a'+2=b+1.

2) a' is achieved by exactly one element in {ak,...,am}, say ak. If vk has
an upper cover, say w1 in P(Sk,<) then the completion time for w1 in
P(Sk,<) is b. Thus by iii) we cannot assign completion times of b for
both w1 and vi. Thus vi must be assigned completion time b+1. On

the other if u1 is a maximal element of P(Sk,<) then we can assign
completion time b to vi .

If b=a and it is achieved by at least two elements in {b1,...,bk} then by iii) vi must
be assigned termination time a+2. Otherwise, we can assign to v a completion time of
a+1.

Clearly the scheduling obtained for Plow(vi) is optimal and the whole process takes
linear time as claimed. A dual argument proves our result for Pupp(v)i.

QED.

We now show that Step 4 can be achieved in O(n log(n)) time.

Lemma 6: Suppose that we have optimal schedulings for Plow(vi) and Pupp(vi) with
completion times a and b respectively. Then we can obtain an optimal schedule for P(Jn,<)
in O(n log n).

Proof: Let d=max{a,b}. The first thing to notice is that the optimal completion time of
P(Jn,<) could be any integer in the range d to l=a+b. Our problem is now to find the
smallest integer g in the range d to l for which an g-schedule for P(Jn,<) exists. This can be
accomplished by a performing a binary search for g in the range d=min to max=l. At each

step of our search, we check if a g-schedule for T exists, for g=
min+max

2 . If a g-schedule

exists for T, we make max=g, otherwise min=g. Since d+l is at most n, the number of
iterations of our search is logarithmic.

We now proceed to prove that for any integer g in the range d to a+b we can test
in linear time if an g-scheduling for P(Jn,<) exists.

Let g and h be optimal schedulings for Plow(vi) and Pupp(vi) with completion times
a and b respectively. Since g > a,b these schedules are g-schedules of Plow(vi) and
Pupp(vi) respectively. Using g and h, find g-schedules g' and h' for Plow(vi) and
Thigh(v) by using FMAX(g, Plow(vi), vi) and FMIN(g, Pupp(vi), vi).

If the completion time of vi in the g-scheduling g' of Plow(vi) is greater that the
completion time of vi in the g-scheduling h' of Pupp(vi) then no g-scheduling f exists, for
P(Jn,<), since otherwise f would induce g-schedulings of Plow(vi) and Thigh(v) with

completion time c(vi) greater than or equal to Min(g, Plow(vi),v) and smaller than or equal to
Max(g,Pupp(vi),v), which is a contradiction.

On the other hand if the completion time of vi in the g-scheduling g' of Plow(vi) is
smaller than or equal to the completion time of vi in the g-scheduling h' of Pupp(vi), then we
can get an g-schedule for T in which the completion time for any u Œ Plow(vi), u ≠ v is the
same as the completion time of in h' and for any u Œ Pupp(vi) including v itself, the
completion time of u is that of g'.

Since FMIN(g, Plow(vi), g, v) and FMAX(g, Pupp(vi), h, v) can be carried out in
linear time checking if a g-schedule for T exists can be done in linear time. Our result now
follows.

QED

3. Concluding Remarks

We have presented an O(n log2 n) time algorithm to find optimal schedulings with
communication delays for tree orders. We believe that this algorithm, however, is not
optimal and that it may be possible to obtain an O(n log n) time algorithm or even a linear
time one.

In some special cases, it is possible to find linear time algorithms. For example if a
tree order P(Jn,<) is such that it has a unique maximal element, i.e. an element vi such that
for any vj Œ P(Jn,<), vi≠vj we have vj <vi, it is easy to find a linear time scheduling
algorithm.

To see this, let us assume that the elements of T are labelled v1,...,vn in such a way
that if i<j then vj</ vi. It is easy to see that the following linear time procedure will obtain an
optimal scheduling with communication delays for P(Jn,<).

For i=1 to n do
If vi is a minimal element,

c(vi)=1
Else

Let vi(1),...,vi(k) be the lower covers of vi. Assume w.l.o.g. that
c(vi(j))≤c(vi(k)), 1≤j<k

If k ≥ 2 and c(vi(k-1))=c(vi(k))
 c(vi)=c(vi(k))+2

else
c(vi)=c(vi(k))+1

endif
endif.

References

[1] H.H. Ali and H. El-Rewini, "An Optimal Algorithm for Scheduling Interval Ordered
Tasks with Communication on N Processors", University of Nebraska at Omaha,
Mathematics and Computer Science Department, Technical Report 91-20, 1990.

[2] T. Casavant and J. Kuhl, "A Taxonomy of Scheduling in General Purpose Distributed
Computing Systems", IEEE Transactions on Software Engineering, SE-14:2, February
1988.

[3] E. Coffman and R. Graham, "Optimal Scheduling for Two Processor Systems", Acta
Informatica 1, 1972, 200-213.

[4] T. Hu, "Parallel Sequencing and Assembly Line Problems", Operations Research 9,
1961, 841-848.

[5] C.H. Papadimitriou and M. Yanakakis, "Scheduling Interval-Ordered Tasks", SIAM
Journal of Computing 8, 1979, 405-409.

[6] M. Prastein, "Precedence-Constrained Schedulings with Minimum Time and
Communication", M.S. Thesis, University of Illinois at Urbana-Champaign, 1987.

[7] R. Sethi, "Scheduling Graphs on Two Processors", SIAM Journal of Computing 5,
1976, 73-82.

[8] J. Ullmann, "NP-Complete Scheduling Problems", Journal of Computing and System
Sciences 10, 1975, 384-393.

