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Abstract

This paper assumes a set of identical wireless hosts, eachveare of its location. The network is
described by aunit distance graph whose vertices are points on the plane two of which ameected if
their distance is at most one. The goal of this paper is tagdéecal distributed solutions that require a
constant number of communication rounds, independentheafietwork size or diameter. This is achieved
through a combination of distributed computing and comiurtal complexity tools.

Starting with a unit distance graph, the paper shows: (1) Koextract a triangulated planar spanner.
(2) Several algorithms are proposed to construct spannéeg bf the triangulation. Also, it is described
how to construct three spanning trees of the Delaunay tiatign having pairwise empty intersection,
with high probability. These algorithms are interestinghieir own right, since trees are a popular structure
used by many network algorithms. (3)I8ad balanced distributed storage strategy on top of the trees is
presented, that spreads replicas of data stored in theihastgay that the difference between the number
of replicas stored by any two hosts is small.

Each of the algorithms presented is local, and hence so idirthedistributed storage solution,
obtained by composing all of them. This implies that the sofuadapts very quickly, in constant time,
to network topology changes. We present a thorough expatahevaluation of each of the algorithms

supporting our claims.

. INTRODUCTION

The problem of storing multiple copies of files in differeraris of a network has been widely

studied since the early 70's, see [7] for a thorough surtgy.dvides a classic solution to reduce
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response time for data, increase availability, and impgmmeral fault-tolerance. The remarkable
growth of reliable and efficient networking over the past tieecades has fostered the development
of distributed storage systems. A recent issud=&iE | nternet Computing [25] devoted to this area
describes various approaches taken by distributed steyagemns, including storage virtualization,

peer-to-peer, and server-to-server.

A. Data storagein wireless networks

This paper develops distributed storage solutions for featireless networks. It assumes a set
of n identical wireless hosts in the plane, each one aware afgttion, either from a GPS system
or through other means, such as inertial sensors and acoastje-finding devices. Two hosts can
communicate if they are within a fixed distance, say one Uihiis in our paper, a wireless network
can be described as a geometric graph whose vertices aits paithe plane (our wireless hosts)
two of which are connected if their distance is at most oeejs.aunit distance graph.

Since the topology of wireless networks is constantly cirajgand the nodes have location
awareness, protocols for wireless networks differ sigaifity from standard solutions used in
wired networks. In addition, wireless devices have muchelowandwidth and limited power
supplies. Therefore, protocols for wireless networks &hose as little communication as possible
and should run as fast as possible; even traditional solsiibat have only a linear cost in the

diameter of the network may not be acceptable. The goal epgper is to desigmcal distributed
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solutions that require a constant number of communicatonds, independently of the network

size or diameter.

The absence of a central infrastructure, together with tgkly dynamic nature of wireless

networks, imply that such networks do not have an associated topology. An important task is

to determine an appropriate topology over which high-levetocols are implemented; see [22] for

a survey of various topology control methods. Algorithmat thllow to establish and maintain an

energy efficient connected constant degree overlay nethark been described in e.g. [9], [13],

[14], [24]. Starting with a unit distance graph, this papetr&cts a triangulated planar spanner

through the local algorithm of [14], and then proposes sshadgorithms inspired by the method

of [2] to construct a spanning tree of the triangulation.lBaligorithms are local and hence adapt

in constant time to network topology changes.

B. Related results and applications of data storage

An interesting application of the storage protocols désatiin this paper is for the problem of

reliably storing globaknapshots of the state of a distributed system (e.qg. [6], [8]). Shapslbba

distributed system can be used, for example, for systenveegafter a problem (e.g. deadlock)

is detected. A strategy for reliably storing data such apsimats can considgpatial redundancy,

temporal redundancy, or a combination of both. In spatial redund@&ach snapshot is replicated

and spread among a number of processors, in a way that if at prasessors fail, the snapshot can
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be recovered; e.g. storing several copies in differentgssars, or spreading each copy into several

pieces using coding based strategies; see [10], [21] aackrefes herein. In temporal redundancy a

few, sayk, of the latest snapshots, are stored in different proceskwirecovery the latest available

shapshot is used. Either way, since snapshots may be rather(kach one contains the local state

of every processor in the system), it is convenient to delsadanced strategies that distribute the

load evenly among the processors. This work improves upgsdltutions to the snapshot storage

problem of [16], where static strategies are computediné-lising combinatorial design theory.

Papers such as [10], [11] have proposed coloring basedi@mdutor mobile networks for a

different storage problem, that requires that every nodedalicas nearby; these solutions are not

local.

C. Outline and results of the paper

The goal of this paper is to desig¢pral distributed storage solutions that requirgvall number
of communication rounds, independently of the network erzgiameter. This is achieved through
a combination of distributed computing and computatioahplexity tools, that make heavy use
of the fact that nodes know their locations, and the geonudttige plane. The solutions proposed
here are built up from two layers: a spanning tree maintemgmotocol, and doad-balanced
storage backup protocol. Various spanning tree protoaelgpeoposed, which are interesting in

their own right: trees are a popular form of network struetthtat are used by many network
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algorithms. We explore two types of constructions. 1)Indhge of a general planar spanner we use
simple edge elimination technigue to subtract a tree spaR)ie the case where the planar spanner
is a Delaunay triangulation our construction of the treengea s distant based and leads to three
edge disjoint trees which is important in improving faulket@nce. These trees are subsequently
used to provide simple input collection algorithms thattheebasis of our backup protocols. The
backup protocols allow each node to replicate data to neigidy nodes for fault-tolerance, such
that the difference in the number of copies each node stersmall. A thorough experimental
study is presented, that analyzes the properties of the, taeel of the performance of the backup
protocols on top of the trees.

The protocols described in this paper also show how to cacislocally three spanning trees
whose union is the Delaunay triangulation of the given antwith high probability. A virtual
ring can be maintained by traversing the tree in DFS ordeis Tihg easily adapts to network
changes, deletions and additions of processors can beduhlodklly and on the average in con-
stant time.

The backup protocol that stores data in consecutive noddakenirtual ring, according to
various policies, is presented. Notice that once the trebtaned, leader election can be performed
using only a linear number of messageRhis is the first algorithm that matches thén logn)

The algorithm works also in a planar graph that is not a tridatipn, with complexityO( f log f) in the sizef of the largest

face of the network.
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lower bound of [23] for leader election in a geometric ringstden.

Finally, we have simulated all our algorithms and in Sectiwe provide detailed results of our

simulations for a wireless network produced fr@60 nodes generated at random. Our simulations

indicate the effectiveness and adaptability of the alhorg proposed in this paper.

[I. ALGORITHM FORDISTRIBUTED DYNAMIC STORAGE

Assume a set oh wireless hosts in the plane each of which is aware of its iocafThe

main feature of our algorithm is that dynamic storage isimth and subsequently maintained

by cooperating nodes that use only “local” knowledge, inrdgrmation about themselves and their

distance one neighborhood nodes. In outline, our propoiséidbdited dynamic storage algorithm

itself is in two phases. In the first phase the input unit dispb is processed in order to produce

first a triangulated planar spanner (using a Localized Delgdriangulation algorithm [14]) and

from there a tree spanner is obtained using the Entry-Edgertdtion criteria introduced in [2]. In

the second phase a cycle is embedded into the tree spannsulasetjuently our dynamic storage

procedure is applied.

A. Preprocessing procedures

In this section we review the techniques necessary to pcepsathe wireless network. We need

two key components. The first one, a technique to extract anépa tree of a planar geometric

graph, and a method to extract from a unit distance graphlotte Delaunay subgraph, which
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under the right conditions is the same as the Delaunay wiiatign of the points of a unit distance
graph.

1) Delaunay and Localized Delaunay Triangulation: Let the hosts have identical radigsand
let G(P,r,) denote the unit disc graph on a $&bf n nodes. The parameters we chose are guided
by the main result of Penrose [17], [18] which guarantee®nnectivity. The result implies that
for any real numbe if r,, > \/@ then the probability the netwoik (P, r,) is connected is at

c

leat> e~ °, asn — oo. If we substitutee® = s and recall that= “ ~ 1 — e~¢ then we see that

. 1
Pr[NetworkG (P, r,) is connected> 1 — —, (1)
S

Inn+lns
forr, > /=05,

The Delaunay triangulation cannot be computed “locally’tHe sequel, we will require that our
construction is based only on local operations by the hitsteas been proved by Bern et al. [3]
(see also Li et al. [15]) that if the reachability radius oé thosts is chosen so as to satisfy the
condition of Inequality 1 then with high probability the Reinay triangulation is the same as the
localized Delaunay triangulation. We review their arguimearthe sequel. The probability that a
regionR of area| R| has exactly nodes from the random poinset obeys the Poisson ditribatidn
is equal to

(n|R])’

il

e Al

Let d,, be the random variable that denotes the length of the loraglegt of the Delaunay trian-
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gulation of the random pointset. &, > d then there is a triangle in the triangulation at least one
of whose edges i d and whose circumcircle contains no other points of the rangoinset:
note that the area of this circumcircle is at leagt/4. Since the Delaunay triangulation of a
set ofn points has at mosin triangles we conclude thdtr[d,, > d] < 3ne~ /4 If we put

1/t = 3ne~"m?*/4 solve ford and substitute in the last inequality then we see that

Pr [dn - \/4(lnn+lnt+ln3)

1
21—;. (2)

nim

If we now puts = n8 in Inequality 1, and = n in Inequality 2 then we see th&t [d, < r,] >
1— %, forr, > \/% i.e., the longest edge of the Delaunay triangulation isliemtnanr,, with
probability at least — +.

The Unit Delaunay triangulation (denoted b\Del( P, r,)) is the graph obtained by removing
all edges of the Delaunay triangulation which are longentha Note that using only their
local information nodes of a given triangle alone can detodgether whether or not they form
a triangle. A triangle isk-localized if all its edges have length at mdsand also the interior
of its circumcircle contains no point aP that is ak-neighbor of its vertices. Theé-localized
Delaunay graph (denoted yDel*) (P, r,,)) consists of exactly the Gabriel edges and edges of the
k-localized Delaunay triangles [15]. It has been shown [@&t £ Del*) (P, r,,) is planar fork > 2,
while LDel™ (P, r,)) may not be planar. However, there is an algorithm that caroverintersec-

tions fromLDel™™ (P, r,,) in order to produce the planarized Delaunay Triangulatitemoted by
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PLDel(P,r,)). The planarization of. Del") (P, r,,) essentially involves the following operations.
1) Each node: gathers the location information of its distance one neaghbod (includingu
itself) and computes its Delaunay Triangulation. 2) Theenaccomputes all triangles with all
edges at most one unit and broadcasts a message to form an®ekaiangle if the angle of the
triangle formed at: is at leastr/3. 3) Nodewu accepts a proposal if the triangle proposed is in
its Delaunay triangulation and has been proposed by botihhers of the proposed triangle. For
more details see Alzoubi et al. [1]. In view of our previousalission we have the following result.
Proposition 2.1: If r,, > \/% then the planarized Delaunay triangulation with radiys the

same as the Delaunay triangulationfofvith probability at least — % |

Remark 2.1: The cost of constructing the localized Delaunay triangoitleéssentially involves

the exchange of the distance one neighborhood between.nddesrding to Bern et al. [3] the

expected size of the maximum degre@iélog’ign) which in turn also gives the complexity of the
localized Delaunay triangulation. We also note that the ebthe localized Delaunay triangulation
is even less since in view of Proposition 2.5 the expectededegf a node (other than the leftmost
and rightmost is at most six. This is because when travetbmgraph left to right three spanning
trees arise each of which contributes one link to a node.|&ilyi when traversing right to left

three spanning trees arise each of which contributes okédia node. Since with high probability

the Delaunay triangulation is the disjoint union of these$ we obtain that the degree of every
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node is at most six.

2) Tree extraction in planar subdivisions: Let P be a simple polygon embedded on the plane,
and let/ be the vertical line tangent tB8 such thatP lies to the left ofl. Then theentry edge ofP
is thelowest edge ofP that touches.

Let G be a plane geometric graph, that is a planar graph embedd#e @iane such that its
edges are represented by line segments joining pairs ofspa@presenting the vertices 6f G
partitions the plane into a set of faces one of which is unbdedn Each face of G, but the
external one defines a polygon. The entry edgg isfthe entry edge of its corresponding polygon.
Let 7Ti; be the graph obtained frotd by removing the entry edge of all its faces, albeit the extkern
one. The following result is proved in [2].

Proposition 2.2: T is a plane spanning tree 6f. |

This extraction technique is useful for general planar susidns. In the sequel we will develop
new and more efficient “localized” algorithms for extragfitnees.

3) Tree extraction in convex subdivisions. Graphs all of whose faces, but the outer one are
convex, are calledonvex subdivisions. If in addition all the faces ofs with the exception of the
outer one are triangles; is called atriangulation. The following observation is straightforward:

If G is a convex subdivision thefi; can be obtained as follows: For every verteaf GG consider

the set of edges to the left af whose rightmost vertex is. Remove fromG all of them, but
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the topmost. We can refer to this as fleimost-topmost elimination rule. Similarly, aopmost-
rightmost elimination rule can be obtained follows: for every vertexf G consider the set of
edges whose bottom vertexisRemove fromG all of them, but the rightmost. In a similar way
we can define aightmost-bottommost and bottommost-leftmost elimination rules, each of which
defines a spanning tree 6f

Our previous observation allows us to carry out the extoactf a spanning tree in a planar
subdivision in a fully distributed way, in fact if is a vertex of a convex subdivision all it has to do
is to eliminate all the edges incident to it, except the top edge to its left.(k be a triangulation
whose vertex set is a point s€twith n elements. Assume thdt hask of its elements on its
convex hull. LetT; andT, be the spanning trees obtained by applying|#finost-topmost and
thetopmost-rightmost elimination rules respectively t@. The following result is easy to prove.

Proposition 2.3: T and7}/,, have at most + ”T"“ edges in common. |

As a direct consequence we also have.

Proposition 2.4: Let GG be a wireless network (modeled as a unit distance graphhn Tikimg
local operations at each node®@f we can maintain a plane spanning tre&-of
Proof. Using the algorithms presented in Alzoubi et al. [1] we fietalate the localized Delaunay
triangulation ofGG. Then using théeftmost-topmost elimination rule obtain a plane spanning tree

T of G. Since both steps can be achieved using only local opesatibeach node aofs, the
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extraction ofl; can be done in a local way. |

Since for points placed on the plane at random with the umifdistribution the expected number

of points on the convex hull aP is [20]:

1) ©(Inn) for points chosen in a convex polygon, and

2) ©(n'/3) for points chosen in a convex region with doubly differebkeboundary,

we can conclude that in genefdd; andT¢, will have, in the worst case, aproximatejyedges in
common.

Distance-based tree extraction: As we will see, it turns out that distance based tree extracti
is more efficient. Motivated from our experimental analyisSection IV we will explore the
following new rules for tree extraction whereby all nodesc@pt the righmost one) are connected
to a neighbor to their right. In the sequel consider the cosubdivision formed by the Delaunay
triangualtion. In the Max distance left to right (MaxDLTR)}é& each node is connected to a
max distance neighbor to its right; in the Min distance leftright (MinDLTR) tree each node
is connected to a min distance neighbor to its right; finallythe Mid distance left to right
(MidDLTR) tree each node is connected to a neighbor othar thax or Min neighbor to its
right (if it has one), else to the Max. It turns out that witlghiprobability these three trees contain
all the edges of the Delaunay triangulation with high prolitgbasymptotically inn. To be more

precise we can prove the following result.
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Proposition 2.5: Assumer,, > 9}# and consider the trees MinDLTR, MaxDLTR, and Mid-
DLTR. Then the probability that any pair among these tressimeedge in common is at mdst,
asymptotically inn.

Proof. As in Proposition 2.1 the probability that a regiénof area| k| has exactly nodes from
the random poinset obeys the Poisson ditribution and islequﬂﬁ‘l’f—we‘”m‘. Consider a given
edgee, saye := {u,v} that is common to both trees MaxDLTR and MIinDLTR. It followsat
nodeu, say, has only one neighbor to its right, namelgince the reachability radius of the nodes
is r,, it follows from the definition of the tree MaxDLTR that is the max distance neighbor
of u and therefore the region determined by the semicircle ceditetu and radius-, (call this
regionsS) contains exactly one point from the given pointBeHence Pr|e occurs in both trees=
n|S|e Sl = %e‘”m‘nﬂ < 4% = —I>. Since the Delaunay triangulation has at nsedges it
follows that the probability the two trees have an edge inmmm is at most /»n?, asymptotically
inn.

A similar proof will work for any other pair of trees. For exaie, for the trees MaxDLTR
and MidDLTR if a given edge: := {u,v} is common to both then the semicircle centered at
u and radius-,, will have at most two points from the pointset. Threfore aperpbound on the
probability that an edge is common can be obtained easily #sei previous analysis using the
Poisson distribution. We leave the details to the reades. ddmpletes the proof of Proposition 2.5.
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We will see later that having three edge disjoint trees weahte to run the backup protocol on
“edge disjoint backbones” of the original wireless netwatiich in turn improves fault tolerance.

We also note two other useful consequences of PropositbfoR the three trees MaxDLTR,
MaxDLTR, and MidDLTR and under the assumption that> 9}% First, the union of the trees
is the Delaunay triangulation of the pointgewith probability at least — 1/n, asymptotically in
n. Second, for any two among these trees, the expected nuird@mnmon edges is constant. This
follows easily from the well-known identitg'[X| = >, Pr[X > k], whereX is the random vari-
able that counts the number of edges common to the two trez=aldd' note that as a consequence
of a result by Bose et al. [4], the diameter of a Delaunay tyidation on a random set afpoints
isO(y/n).

Other rules for tree extraction: In distance-based tree extraction a node must search all its
neighbors and select the one that is furthest, nearestA simpler tree extraction algorithm is to
have each node select a neighbor to its right (respectiefyat random, if it has one. Another one
is to have each node select its neighbor forming a slope shainimal with the horizontal. This
gives rise to the trees RLTR, RRTL, and HorDLTR, respecyivitlat have also been considered in

our experimental results described in Section IV.
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B. Distributed Dynamic Storage Algorithm

We proceed now to show how to solve the dynamic storage profdewireless networks. We
remark again that our algorithms are local, in the senseatianode in the network only knows
that it is a member of a unit distance wireless network, arahgttime it communicates only with
its neighbors.

We observe first that the dynamic storage problem has an ehsyos if G is an oriented
cycle, that is if the vertices off are labeled{vy, ..., v,,_1} such that; is adjacent ta,,,, i =
0,...,m — 1 (here addition isnodm). Since our goal is to store a predetermined nunibef
copies of a data sef; stored atv;, this can be accomplished by sendifigto a predetermined
set of vertices);;,, ..., v;1j,. However, extracting a hamiltonean cycle in a wireless peitvin
a fully distributed way, i.e. in such a way that a vertex caly @@mmunicate with its neighbors
seems to be an impossible task. Instead we use the followstlgad: Let7” be a geometric plane
tree. If wewalk around 7" as we would in a preorder traversal’Bf we define in a natural way a
cycle withm = 2n—1 vertices in which every edge @fappears twice (thus traversing an Eulerian
tour), and each vertex appears as many times as its dedree in

1) Sorage bachup protocols. Now we can give two storage backup protocols. In the sefel
denotes any of the trees constructed in Section lI-A. We shan integer parameterepresenting

the number of copies to be stored in various nodes of the mktWbe size ofc can vary but also
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depends on the desired fault tolerance for data recovenjresty Let 7, (u) be the set of nodes to
which nodeu forwards its data for storage. In general, the/sgt) is generated locally by node
and the generation procedure is part of the forwarding dlgarthat is common to all participating
nodes. The forwarding set is of size

Sorage Backup Protocol (SBP(k))::

1) Embed a ring topology int@; by performing a “geometric” DFS-based preorder traversal

that uses the geometric identities of the nodes.

2) Each node: forwards its data to the nodes of the $¢fu).

Observe that this embedding can be executed “locally” aredftinwarding strategy does not
prevent non-leaf nodes from receiving multiple copies ofatadile originating from the same
node.

It is easy to adapt the forwarding procedure so as to avoetitems by decrementing a counter
every time a copy is received by a “new” node. For example, ame consider the following
algorithm.

Non-Repetitive Sorage Backup Protocol (N RSBP(k))::

1) Embed a ring topology int@; by performing a “geometric” DFS-based preorder traversal

that uses the geometric identities of the nodes.

2) Each node: forwards its data to the nodes of the $¢{u). A given node accepts the data

forwarded to it only if it has not yet received other data frihra same node. Else it forwards
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its data to its forward node in the ring.

There are two ways to affect the desired reliability of reergvOne is the size of the parameter
k: the more copies are stored to other nodes the higher tlabilél. Second is the choice of nodes
to which nodeu forwards its data: this is determined by the 8gtu) and makes load balancing
possible. For example, one can choose to store the datadasecutive forward positions either
“close” to u or “further away” fromu or move them tat forward random positions in order to
achieve higher load balance.

In the sequel we consider three possibilities for the fodivay setF).(u) at u: each node:
selects the seft;.(u) of £ nodes according to one of the following rules (note that afles select
the same rule).

Forwarding Rules:

1) Consecutive Forwarding (CF) Rule:

Fr(u) = {u + 1 mod n,u+2modn,...,u+ kmod n}, i.e., nodeu forwards its data to
its k “successive” neighbours in the oriented cycle.

2) Distant Consecutive Forwarding (DCF) Rule:

Fr(u) ={u+d+1modn,u+d+2modn,...,u+d-+ kmodn},ie., for some fixed
valued (signifying distancel away fromu) nodeu forwards its data té& “successive” nodes

at distancel away from itself in the oriented cycle.
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3) Random Forwarding (RF) Rule:
Fi(u) = {u+t; mod n,u+ty mod n,...,u+t, mod n}, wherety, to, ..., t, are random
values in the rangé..m generated by node, i.e., nodeu forwards its data té random

locations in the oriented cycle, where the integeis chosen so that? = o(m).

[1l. PROPERTIES OF THESTORAGE BACKUP PROTOCOL

In this section we discuss properties satisfied by our podtoamely load balancing and failure

recovery.

A. Load balance

The load balancing attained by the algorithm depends ngtamthe forwarding algorithm but
also on the topology of the wireless network.

In general, experimental results indicate (see Table t)tteaspanning treé; obtained fron¢
has small degree. Therefore on the average case the pré@ngensal oril; will generate a ring
topology such that each node of the networkegeated a small number of times.

Let us analyze the performance of the forwarding protodéilst consider the non-repetitive
storage backup protocol. ¢fis the max degree of the spanning tree every node of the irggtitig
will store at mostc copies of other nodes’ data. In particular we have the fahgwesult.

Proposition 3.1: For each node let S(u) be the number of data storedwatThe non-repetitive

Storage backup protocol achieves load balancing in theeseva for all nodes:, v, |S(u) —
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S(v)| < ck. H

A similar result also holds for repetitive loads. A trivighper bound for the maximum absolute
difference between loads can be obtained by overestimétinigad. Assume a nodewith degree
c. We can comput&ad(v) by adding the storage-requests:diifferent directions. Notice that only
k nodes for each direction can request from node store one unit of data. On the other hand,
the nodes of only one direction can upload to node toc units of data each, the nodes of only
one direction can upload up to— 1 units of data each, etc. By adding the uploads and since the
minimum load of a node might be zero, we have the followingsdeproposition.

Proposition 3.2: For each node: let S(u) be the number of data storedat The repetitive
Storage backup protocol guaranties that for all nades

Su) - 5| < 24D,

B. Repetitive versus non-repetitive loads

One may think that non-repetitive Storage backup protosiodaild guarantee lower maximum
difference between loads, but this is not always true. Tongee consider the family of trees on

n + 6 nodes depicted in Figure 1, and assume 2. The eulerian tour arising is

ViU ... 0, 12343256521 v,...090
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<1

Fig. 1. A family of trees om + 6 nodes, where. > 1.

The minimum load over the nodes obtained by both protocalksris. The repetitive Storage backup
protocol loads node 2 with 4 units of data, while the non-tiéige backup protocol loads the same
node with 6 units of data. Finally it is easy to see that theadd are the maximum that are obtained
by each protocol.

However, in most cases, non-repetitive Storage backup@uts outperform repetitive storage

backup protocols. This is also confirmed by our experimeamalysis in Section IV.

C. Recovery fromFailure

The resulting network failure recovery depends on the baglkotocol used. In the sequel we
look at properties oN RSB P(k).

1) Snglenode failure: For every node of the network there is a backup of its data etk
other nodes of the network. Therefore our protocdl is1 fault tolerant. In particular we have the
following lemma.

Proposition 3.3: The Non-repetitive storage backup protodokS B P (k) is k—1 fault tolerant,
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i.e., if at mostt — 1 nodes fail then the data of every other node of the networtored in at least

one non-failed node. [ |

2) Random failures. The protocol is robust under random failures. Assume thahalnodes
of a random sebt' of sizem (wherem > k) fail. A given node stores copies of its data irko
other nodes of the network. The probability that at leastafritbese nodes is not ifi is 1 minus
the probability that they are all i§. The probability that a given node is i is m/n, and the
probability that allk nodes are irf is (m/n)k. In particular, we have the following result.

Proposition 3.4: Assume that all the nodes of a random Seif m (wherem > k) nodes fail.
The probability that all the data of a given node are storesbate non-failed node of the network

. k
is at leastl — 2. [ |
n

3) Failures of geographical regions. Our protocol can easily be adapted so that it is robust to
geographic failures, that is failures created by eventk asgower failures that may affect the set
of nodes belonging to a connected region of the plane. Centie case of a “civilized” unit disc
graph, i.e., any pair of nodes is at distance at |&dsim each other, wherg > 0 is independent of
n, the size of the network. Assume that all the nodes in a gpbgraegionR of areaA fail. Since
the unit disc graph is civilized, the region can have at most nodes. Therefore # > A/ ) then
every node: within the regionk has a backup of its data in at least one node outside the région

In particular we have the following result.
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Proposition 3.5: Assume that the unit disc graph is civilized with parametef all the nodes
of a geographic region of area at mast fail then the data of each node within the region have

been stored in at least one node outside the region. |

V. SIMULATIONS AND EXPERIMENTS

In this section we provide simulations of the algorithmspgmeed in the previous sections and
confirm experimentally the efficiency of our proposed teghes for a location aware wireless

network.

A. Random setting

First we discuss our choice of parameters in the experirhezgalts.

1) Connectivity, Delaunay and planarized triangulations. Let the hosts have identical radits
and letG (P, r,) denote the unit disc graph on a gebf n nodes. Starting from a random gef
n points, we compute their Delaunay Triangulation. As intidan Subsection II-A.1 if we select
Ty > \/%then the longest edge of the Delaunay triangulation is @ntdanr-,, with probability
at leastl — % i.e., with high probability the planarized Delaunay andddeay triangulations are
the same (see Proposition 2.1).

2) Spanningtreesand forwardingrules. From the Delaunay triangulation we compute spanning

trees using the edge extraction algorithms in Subsecti#n3dl We then implement the storage
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backup protocol with three diffrent forwarding rules as ibSection II-B. In the random forward-
ing rule the nodes will forward their data toother processors. K values are chosen randomly
and independently with the uniform distribution in the raigm then it is well-known from the
“birthday paradox” that the probability that no collisionlvoccur is at leastl — % Note that
the sizen of the network is in general not known to the individual nadeisenk, the valuen must

be chosen so that there is low probability of collision amtrgk random numbers,, t,, . . ., tx:

to achieve this it is enough to guarantee tttat= o(m).

B. Results of the simulations

Figure 2 depicts output of our experiments. From top-tddsotand left-to-right, the first row
depicts a set oR00 points chosen at random and the next picture their Delauhlag. trees
depicted are formed from the Delaunay triangulation usiregegdge elimination rules described
in Subsection 11-A.3.

The statistics reported in Table | give the average frequencegrees of nodes and diameter
of graphs in20 experiments witt200 nodes chosen at random each for the Delaunay and the
MIinDLTR, MaxDLTR, RLTR, RRTL trees, respectively.

Table Il and Table Il illustrate the load averages for thee¢hstorage backup algorithms pro-
posed for both the storage backup protogBIP (k) and the non-repetitive storage backup protocol

NRSBP(k). Table Il gives the average maximum absolute differencerden loads and Table IlI
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Fig. 2. Delaunay triangulation and trees resulting fromralcen set oR00 points.

the average difference between loads over all pairs of no@leese tables depict the consecutive
(CF: k = 4), distant-consecutive (DCH: = 4,d = n/2), and random distant (RDR: =
4) forwarding rules for cycles generated from the MIinDLTR, . TR, RLTR, RRTL trees,
respectively, irR0 experiments witl200 nodes each. Note that the CF forwarding rule outperforms
DCF and RDF, however it forwards data “near” the node init@athe forwarding. The tables
also indicate that the MinDLTR tree has best performance ggtond best performing tree was
HorDLTR but we do not exhibit these results here).

Figure 3 depicts a histogram of the average performanceeoSBP and NRSBP algorithms
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Degr | DT Min Max | RLTR | RRTL

1 .000 | .286| .432 341 .336

2 .000 | .500| .309 .406 411

3 .018 | .173| .150 .189 192

4 34| .026 | .069 .053 .050

5 .275 | .008 | .027 .008 .008

6 .278 | .004| .007 .002 .002

7 189 | .002| .002 .001 .002

8 .077 | .000| .002 .000 .001

9 .006 | .000| .000 .000 .000

Diam | 5.83 | 57.85| 35.10| 41.85| 41.50

TABLE |
AVERAGE FREQUENCY OF DEGREES OF NODES AND DIAMETER OF GRAPHIS 20 EXPERIMENTS WITH200 NODES EACH

FOR THEDELAUNAY, AND THE MINDLTR, MAXDLTR, RLTR, RRTLTREES RESPECTIVELY

performed 20 times each in graphs of 100 to 200 random painterements of 50, respectively.
The top picture shows the average difference among pairsddéswhile the bottom picture the
max absolute difference among pairs of nodes. Each pairlofrots indicates the performance of
SBP (light-gray column) and NRSBP (heavy-gray column) fer €F, DCF and RCF forwarding
rules, respectively: note that in RCF we implemented only?.SBbserve that the max absolute

difference increases a little while the average absoluterdnce among pairs of nodes remains
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Min | Max | RLTR | RRTL

CF: SBP 10.8 | 13.6 12.0 115

CF:NRSBP | 09.9 | 12.8 10.6 11.4

DCF: SBP 12.8 | 17.3 14.7 13.8

DCF: NRSBP| 13.0 | 15.6 13.6 135

RDF: SBP 13.6 | 16.8 14.8 14.2
TABLE Il

<

AVERAGE MAXIMUM ABSOLUTE DIFFERENCE BETWEEN LOADS TOP SUBROW IS FOPSBP(.’{:) AND BOTTOM SUBROW FOR

NRSBP(k) FOR20 RANDOM GRAPHS WITH200 NODES EACH

Min | Max | RLTR | RRTL
CF: SBP 243 2.92 2.67 2.62
CF:NRSBP | 2.15| 2.52 2.30 231
DCF: SBP 3.15| 3.14 3.05 2.97
DCF:NRSBP| 3.08 | 2.92 291 2.84
RDF: SBP 3.02| 3.31 3.09 3.01
TABLE 11l

AVERAGE DIFFERENCE BETWEEN LOADS OVER ALL PAIRS OF NODESIOP SUBROW IS FORS'BP(k) AND BOTTOM SUBROW

FORNRSBP(k) FOR20 RANDOM GRAPHS WITH200 NODES EACH
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Fig. 3. Performance of SBP (light-gray column) and NRSBRgegray column) for the CF, DCF and RCF forwarding rules.

almost unchanged.

V. CONCLUSION

In this paper we proposed efficient solutions to the distablustorage problem in wireless
networks and designed local distributed storage solutioaisrequire a constant number of com-
munication rounds, independently of the network size améir. This is achieved through a com-
bination of distributed computing and computational coewjil tools, that make use of location

awareness, i.e., that nodes know their locations, and theegey of the plane.
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