
Computing Maximal Islands

C. Bautista-Santiago∗ J.M. Dı́az-Báñez† D. Lara‡ P. Pérez-Lantero § J. Urrutia¶ I. Ventura‖

Abstract

Given a set S of red and blue points on the plane in
general position, an island I(S, C) ⊆ S is the inter-
section of S and a convex region C. We study the
problem of finding a maximal island according to cer-
tain criterium. For instance, a largest monochromatic
island I(S, C) is a maximum cardinality subset of S,
such that every point of I(S, C) belongs to the same
chromatic class. An O(n3)-time and O(n2)-space al-
gorithm is proposed to find one such subset. Our
approach can be adapted to find monochromatic is-
lands which maximize parameters such as the area,
perimeter.

1 Introduction

In this paper, S will always denote a set of n points on
the plane in general position such that its elements are
classified into two classes or colors, say red and blue.
A subset I of S is called an island of S if there is a
convex set C such that I = S ∩ C. We say that an
island of S is a blue (resp. red) island of S if all of its
elements are blue (resp. red).

In this paper we study the problem of finding is-
lands of S that are optimal according to some pa-
rameters, e.g. find a blue island of S with maximum
cardinality.

The problem of finding the largest monochromatic
island of a point set S (LMIP) was studied in [17],
where an O(n3 log n) time and O(n2)-space algorithm
to solve this problem is given. We present here an
O(n3) time and O(n2)-space algorithm to solve the
LMIP problem which also solves all the problems
studied in [17]. Our algorithms can also handle the
weighted version of our main problem in which the

∗Instituto de Matemáticas, Universidad Nacional Autónoma

de México, crevel@uxmcc2.iimas.unam.mx
†Departamento Matemática Aplicada II, Universidad de

Sevilla, dbanez@us.es, partially supported by grant FEDER-

MTM2006-03909.
‡Instituto de Matemáticas, Universidad Nacional Autónoma

de México, dlara@uxmcc2.iimas.unam.mx
§Departamento de Computación, Universidad de La Ha-

bana, pablo@matcom.uh.cu, supported by MAEC-AECI
¶Instituto de Matemáticas, Universidad Nacional Autónoma

de México, urrutia@matem.unam.mx, partially supported by

grant FEDER-MTM2006-03909.
‖Departamento Matemática Aplicada II, Universidad de

Sevilla, iventura@us.es, partially supported by grant FEDER-

MTM2006-03909.

elements of S are assigned weights (usually integral
values).

We observe that when the labels of the elements
of S are chosen carefully, we can solve problems ap-
parently unrelated. For instance, if we label all the
blue points of S with 1, and the red points with −1,
a maximum weight island is an island with maximum
discrepancy (absolute difference between blue and red
points) [11]. If we label the blue points of S with
1, and the red points of S with −∞, the maximum
weight island is the largest monochromatic island.
Our algorithm can also be easily adapted to solve the
following problems: Find the monochromatic island I
of S maximizing the number of vertices on the convex
hull of I; find a monochromatic island I of S that
maximizes the area, or the perimeter of the convex
hull Conv(I) of I, discrepancy and others.

An outline of the paper is as follows. In Section 2
we present the algorithm in detail. A generalization
for solving other optimization problems is stated in
Section 3. Finally, in Section 4 we show an application
of our algorithm to give an heuristic method for a red-
blue set covering problem.

1.1 Related work

A key problem in computational geometry is the iden-
tification of subsets of a point set having particular
properties. Erdös and Szekeres [16] asked whether
there was a value f(k) such that all sets of at least
f(k) points in general position in the plane determine
a convex k-gon. They give upper and lower bounds
for f(k).

Several papers have also studied the algorithmic as-
pects of problems of this kind, e.g. see [4, 10]. Algo-
rithms are also known for finding subsets of points
with k elements that minimize parameters such as di-
ameter, or perimeter of the convex hull of these sub-
sets [2, 15].

Our motivation to study the LMIP problem arises
from applications in data mining, statistical cluster-
ing, pattern recognition or data compression. In data
mining and classification problems, a natural method
for analyzing data is to select prototypes represent-
ing different data classes. A standard technique for
achieving this is to perform cluster analysis on the
training data [12]. The clusters can be obtained using
simple geometric shapes. Aronov and Har-Peled [3]
and Eckstein et al. [13] considered circles and axis-

1



aligned boxes. In this paper we consider a convex set
for the selection problem.

2 The largest monochromatic island

In this section we present an O(n3) time algorithm
to solve the LMIP problem. Our algorithm is based
on Fisher’s O(n3 log n) algorithm to solve the LMIP
problem [17]. We improve Fisher’s running time al-
gorithm by using efficient data structures.

We proceed now to give some definitions that will
be needed in the rest of this paper. △(p, e) will denote
the triangle having a line segment e as one of its sides
and the point p as the vertex opposite to e; pi → pj

will denote the directed line segment starting at pi

and ending at pj .
Let p0 be a blue point in S, and S0 the set of blue

points in S below p0. From now on we will assume
that the elements of S0 are labeled {p1, . . . , pk} in the
counterclockwise order with respect to p0.

Let B be a blue island of S, and p0 the point of
B with the largest y-coordinate (w.l.o.g. we will as-
sume that such a point is unique). The point p0 will
be called the anchor of B. The weight of B is the
cardinality of B.

Our approach to solve the LMIP is the following:
For each blue point p0 ∈ S, find the largest monochro-
matic island anchored in p0.

Let B be a blue island anchored at p0, and
p0, pσ1

, . . . , pσk
be the vertices of the convex hull of

B labeled in the counterclockwise order around the
boundary of the convex hull of B, starting at p0. We
call the edge pσk−1

− pσk
joining pσk−1

to pσk
the last

edge of the convex hull of B, and sometimes we will
say that B ends at pσk−1

−pσk
. We denote as Blue(P )

the number of blue points contained in the convex set
P . We will also assign a weight w(pσk−1

− pσk
) to the

edge pσk−1
−pσk

equal to the weight of the largest blue
island of S anchored at p0 that ends at pσk−1

− pσk
.

If the triangle △(p0, pσk−1
−pσk

) contains at least one
red point, w(pσk−1

− pσk
) = 0.

Let Blue(pσi
) denote the number of blue points

inside or on the convex polygon with vertices
p0, pσ1

, . . . , pσi
, (1 ≤ i ≤ k).

Our algorithm is based on the following crucial ob-
servation that suggests a dynamic programming ap-
proach to solve the problem:

Observation 1. Blue(pσi+1) = Blue(pσi
) +

Blue(△(p0, pσi
− pσi+1)) − 2.

The additive property in Observation 1, allows us
to solve the problem of finding the largest monochro-
matic island anchored at a point p0 by performing a
radial sweep of the blue points below p0 in the coun-
terclockwise order around p0 by joining sets of so-
called good triangles with respect to p0 [17]; that is
sets of triangles with blue vertices (one of which is p0),
such that they have disjoint interiors, do not contain

p0

Figure 1: We add good triangles from left to right.

red points, and their union forms a convex polygon
anchored at p0, see Figure 1. The bottleneck of the
sweeping approach proposed in [17] is the joining pro-
cess. In the next section, we will show how to com-
pute the LMIP for an anchored island in O(n2) time
and space, thus obtaining an O(n3)-time algorithm to
solve the LMIP.

2.1 The algorithm

The algorithm does a preprocessing stage: First, we
calculate for all blue points p ∈ S the radial ordering
of the blue points in S below p in overall O(n2) time
and space [14] . Second, we preprocess S such that
for each triangle with vertices in S, the number of
red and the number of blue points in the triangle can
be determined in constant time. We use a simple
modification of the algorithm proposed in [15]. The
preprocessing phase takes O(n2)-time and space.

Let p0 be a blue point in S, and relabel the blue
points in S below p0 by {p1, . . . , pk} such that the
line segment joining p0 to pi+1 is to the right of that
joining p0 to pi. This labeling can be obtained in O(n)
time during the preprocessing stage. The algorithm
scans {p1, . . . , pk} from p1 to pk such that for each
two points pi and pj (1 ≤ i < j ≤ k) we calculate the
weight w(pi − pj) to the edge joining pi to pj equal
to the size of the largest blue island B (if any) of S

anchored at p0, and ending at the edge pi − pj. If the
triangle △(p, pi − pj) contains at least one red point
of S, w(pi − pj) equals 0, see Figure 2. For the sake
of clarity if i < j, we will orient the edge pi − pj with
the orientation pi → pj, thus obtaining an oriented
acyclic graph G(p0) with vertex set {p1, . . . , pk}.

Observation 1 will allow us to calculate the weights
w(pi → pj) = w(pi − pj) of the edges of G(p0) induc-
tively as follows:

In the initial stage, when i = 1, we assign to all
edges p1 → pj the weight Blue(∆(p0, p1 − pj)), and
prev(p1 → pj) = null. Suppose that we have assigned
w(·) and prev(·) to all edges pi → pj (1 ≤ j < k). We
now show how to set the weights of all edges pj → pl

(j < l ≤ k).

Assume that all incoming and outgoing edges to
pj are labelled La = a1, . . . , aq and Lb = b1, . . . , br

2



p0

pi−1

pi

pi+1

pi+2
w(pi − pi+1) = 0

Figure 2: The weight of edge pi → pi+1 is 0 because
△(p0, pi → pj) contains a red point.

respectively such that La (resp. Lb) is sorted with
respect to pj , see Figure 3. During the preprocessing
stage both La and Lb can be obtained in linear time.
Given an edge ar in La and an edge bs in Lb, we say
that ar is compatible with bs if the union of ∆(p0, ar)
and ∆(p0, bs) is a convex polygon.

p0

pj

b1

b2

br

a1

a2

aq

Figure 3: Ordering of the edges of pj

Now, for every edge bs in Lb such that triangle
△(p0, bs) contains no red points in S, we want to find
the edge ar in La such that ar is compatible with bs

and has maximum weight (if △(p0, bs) contains red
points, then w(bs) = 0). It is easy to see that if ar

exists then w(bs) = w(ar) + Blue(∆(p0, bs)) − 2. The
index r will be prev(bs)

To obtain r we proceed as follows: We label each
ai (1 ≤ i ≤ q) with max(ai) which is a pointer to
the edge ah (1 ≤ h ≤ i) such that w(ah) is maxi-
mum among w(a1), . . . , w(ai). This can be done in
O(q) time by doing max(a1) = a1 and for i = 2 . . . q

applying the following formula:

max(ai) =

{

ai if w(ai) ≥ w(max(ai−1))
max(ai−1) if w(ai) < w(max(ai−1))

The following procedure computes w(·) and prev(·)
for all b in Lb:

Start by setting i = q. For m = 1, . . . , r find
the first index t from i to 1 such that at is compat-

ible with bm. If such position t exists set w(bm) =

w(max(at)) + Blue(∆(p0, bm)) − 2 and prev(bm) = t,
otherwise set t = 0, w(bm) = Blue(∆(p0, bm)) and
prev(bm) = null. After this make i = t and continue
the iteration of m.

Clearly above procedure runs in O(n) time thus the
complete assignment of w(·) and prev(·) is done in
O(n2) time. Therefore we have proved:

Lemma 1 Assigning w(.) and prev(.) to all edge of
G(p0) can be done in O(n2) time.

The largest blue island B anchored at p0 corre-
sponds to the edge e of G(p0) with maximum weight.
Said in another way, B ends at e. The convex hull,
and thus B, can now be computed by using the point-
ers prev(e) recursively.

By repeating the same procedure with the red
points of S, we obtain the following result:

Theorem 2 Let S be a bichromatic point set in gen-
eral position on the plane. The largest monochro-
matic island can be found in O(n3) time, by using a
preprocessing of O(n2) time and space.

3 Generalizations

The algorithm presented in the previous section can
be used to solve a collection of optimization problems.
Suppose we have a function f : P → IR, where P is a
set of convex polygons.

Definition 1 We say that a function f on P [15] is
decomposable iff for any polygon P = {p1, p2, . . . , pk}
and any index 2 < i < k,

f(P ) = g(f({p1, . . . , pi}), f({p1, pi, . . . , pk}), p1, pi)

where g can be calculated in constant time.

Notice that if f counts the number of points of S

contained within or on the boundary of a convex poly-
gon P , then g(x, y, p, q) = x + y − 2.

Other decomposable functions are the perimeter,
area, number of points in the convex hull, discrepancy,
sum of weights of the points, etc. It is easy to see
that our main algorithm can b e easily modified to
minimizing or maximizing these functions. We can
also modify the method for solving the problem of
finding maximal or minimal empty polygons. Another
interesting variant is the following:

The empty ordered heterochromatic island

problem: Given n points in the plane colored with

colors 1, . . . , k, compute the largest empty convex poly-

gon P with k vertices such that the colors on the ver-

tices of P appear in the order 1, . . . , k.

See [9] for a related paper. Note that the modifica-
tion we have to do to our main algorithm is to build
the graph G(p0) following colors in order 1, . . . , k. The
next result follows.

3



Theorem 3 Let S be a set of points in the plane
colored with k colors and let f be a monotone decom-
posable function. The ordered heterochromatic island
that minimizes or maximizes f can be computed in
O(n3) time and O(n2) space.

4 The Class Cover Problem with Convex Sets

Given a set S of red and blue points, a classical prob-
lem is that known as the Class Cover Problem [7]. It
consists in finding a set of circles with minimum car-
dinality such that every blue point in S is contained
in at least one of the circles, and no circle contains a
red point. We consider a variant of this problem in
which we want to cover the blue points by using (non-
necessarily) disjoint convex polygons. In [1] the prob-
lem of covering a point set with the smallest number
of pairwise disjoint triangles is studied. It is proved
by using a reduction from planar 3SAT-problem that
this problem is NP-hard . We can use the same con-
struction as in [1] to reduce any instance of the planar
3SAT to an instance of the Class Cover Problem with
convex sets in which the only possible solutions are
formed by sets of pairwise disjoint triangles. Hence
our problem is also NP-hard.

The O(log n)-approximation greedy approach for
the more general Set Cover Problem [18] can easily
be applied to our problem. It works as follows: re-
cursively compute the maximum blue island I of S,
remove it and repeat until there are no more blue
points left in S. This approach produces a O(n4)-
time O(log n)-approximation algorithm.

The techniques of [6] to obtain o(log n)-
approximation algorithms work for systems with
constant VC-dimension. Notice that the VC-
dimension of our system is not constant, specifically
it can be Ω(n) (take a set of n points in convex
position).

References

[1] P. K. Agarwal and S. Suri. Surface Approximation

and Geometric Partitions Proc. 5th annual ACM-
SIAM Symp. on Discrete Algorithms. ACM Press,
24-33.

[2] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Find-

ing k points with minimum diameter and related prob-

lems. Proc. 5th ACM Symp. on Computational Ge-
ometry, 283-291, 1989.

[3] B. Aronov and S. Har-Peled. On approximating the
depth and related problems. Proceedings 16th An-

nual ACM-SIAM Symposium on Discrete Algorithms,
2005.

[4] D. Avis and D. Rappaport. Computing the largest

empty convex subset of a set of points. In SCG 85:
Proceedings of the first annual symposium on Com-
putational geometry, 161167, ACM, 1985.

[5] J.E. Boyce, D.P. Dobkin, I. Robert L.(Scot) Drys-
dale, and L.J. Guibas. Finding extremal polygons.

In STOC 82: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, 282289,
ACM, 1982.

[6] H. Brönnimann, M.T. Goodrich. Almost optimal set

covers in finite VC-dimension. Discrete and Compu-
tational Geometry, 14, 463-479, 1995.

[7] A.H. Cannon and L.J. Cowen. Approximation algo-

rithms for the class cover problem. Annals of Math-
ematics and Artificial Intelligence, 40(3-4):215-223,
2004.

[8] T. H. Cormen, C. E. Leiserson, and R.L. Rivest. In-

troduction to Algorithms. Second Edition. MIT Press,
McGraw-Hill, 2001.

[9] J.M. Dı́az-Báñez, G. Hernandez, D. Oliveros, A.
Ramirez-Vigueras, J.A. Sellarès, J. Urrutia, I. Ven-
tura, Computing Shortest Heterochromatic Mono-
tone Routes Operational Research Letters, Volume
36, 684-687, 2008.

[10] D.P. Dobkin, H. Edelsbrunner, and M.H. Overmars.
Searching for empty convex polygons In SCG 88: Pro-
ceedings of the fourth annual symposium on Compu-
tational geometry, 224228, ACM, 1988.

[11] D. P. Dobkin, D. Gunopulos, and W. Maass. Com-
puting the maximum bichromatic discrepancy, with
applications to computer graphics and machine learn-
ing. J. Computer and Systems Sciences, 52(3) (1996)
453470.

[12] R. Duda, P. Hart, and D. Stork. Pattern classifica-

tion. John Wiley and Sons, Inc., 2001.

[13] J. Eckstein, P. L. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its ap-
plications to data analysis. Comput. Optim. Appl. 23
(2002) 285–298.

[14] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Con-

structing arrangements of lines and hyperplanes with

applications. SIAM J. Comput. 15, 341-363, 1986.

[15] D. Eppstein, M. Overmars, G. Rote, and G. Woeg-
inger. Finding minimum area k-gons. Discrete and
Computational Geometry, 7, 4558, 1992.

[16] P. Erdös and G. Szekeres. On some extremum prob-

lems in elementary geometry. Ann. Univ. Sci. Bu-
dapest, (3-4), 5362, 1960/1.

[17] P. Fischer. Sequential and parallel algorithms for find-

ing a maximum convex polygon. Computational Ge-
ometry: Theory and Applications, 7, 187200, 1997.

[18] M. Garey and D. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Freeman, New York, NY. 1979.

4


