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Abstract

Let V and W be points sets in the plane in general position
with cardinality n and m, respectively. We say that a subset S
of W is enclosed by V if there is a simple polygon P with vertex
set V such that all the points of S are interior to P. Clearly the
elements of W which are not contained in the convex hull of V
cannot be enclosed by V. In this paper we prove that if W is
contained in the convex hull of V', then V encloses at least half
of the points of W. We also prove that if the convex hull of V
has at least min{56m, (2[logm]+1)m} vertices, then V encloses
the whole of W.

Let V be a point set in the plane with |[V| = n. We say that
a simple polygon P is a polygonization of V if the vertex set of P
is exactly V. If the n points are in convex position, the number of
possible polygonizations is just one, but this number is large in general
and known to be at most ¢", for some constant ¢ > (0. The extremal
problem of finding the tight value of the constant ¢ has attracted much
attention and is still open [3].
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From the algorithmic viewpoint, several problems on computing
the optimal polygonization according to some criterion, are computa-
tionally hard; the most popular is the FEuclidean traveling salesman
problem, which consists of finding the polygonization that minimizes
the perimeter. The problems of maximizing or minimizing the area
are also known to be NP-hard [2].

Let W be a second point set, with |W| = m such that VU W is
in general position. We say that V encloses a subset S of W, or that
S is enclosed by V, if there is a polygonization P of V such that all
the points of S are interior to P (Figure 1a). Clearly the elements of
W which are not contained in the convex hull of V' cannot be enclosed
by V. We assume hereafter that W is contained in the convex hull of
V, and we will prove that in this situation V encloses at least half the
points of W. We also will prove that if the convex hull of V' has at
least min{56m, (2[log m] + 1)m} vertices, then V encloses the entire
set W. We say that the points in V' are the vertex points and that the
points in W are the weight points. The weight of a polygonization of
V' will simply be the number of enclosed points from W.
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Figure 1: (a): The set of solid points is enclosed by the set of open
points. (b): The set of solid points is not enclosed by the set of open
points.

We first state without proof a simple lemma that will be useful
later. Vertices on the boundary of a simple polygon will be ordered
counterclockwise throughout the paper.



Lemma 1 Let e = pip2 be an edge of the convex hull CH(V) of V,
and g € W. If no point from V UW lies in the interior of the wedges
pip2q and pap1q, then any polygonization enclosing ¢ has e as an edge.

As a consequence, if |[CH(V')| = k < n, a point set W not enclosed
by V can be obtained by placing, for each edge e of CH(V), a point
ge in the interior of CH (V') at distance e of the midpoint of e, for e
small enough (Figurelb).

We have seen in Figurel(b) that the condition of W being con-
tained in the interior of CH (V') does not guarantee that W is enclosed
by V. On the other hand, computing the maximum-weight polygo-
nization, i.e. the one that contains the largest number of points from
W, is an NP-hard problem, as proved in [2]. Hence it is natural to
ask whether at least some large subset of W would be always enclosed.
Our result in this respect follows from a lemma which is intrinsically
interesting on its own.

Figure 2: Two polygonizations whose union covers the convex hull.

Lemma 2 FEvery point set V in general position admits two polygo-
nizations such that their union entirely covers CH(V) .

Proof: Let e = p1py be an edge of V, and let ¢ be its midpoint. A first
polygon P, is defined by connecting the points of V' as they appear
angularly sorted around ¢, plus the edge e (Figure 2a). A second
polygon P, uses all edges in CH (V') with the exception of e, and the
polygonal obtained by connecting the interior points together with p;



and po, as they appear angularly sorted around ¢ (Figure 2b). It is
clear that the union of P, and P, covers CH (V). 0

Theorem 1 Let V and W be point sets in the plane, with |W| = m,
such that W C CH(V) and that V U W is in general position; then
V' admits some polygonization enclosing at least [m/2] points of W.
This bound is asymptotically tight.

Proof: The first statement is an immediate consequence of Lemma
2. To prove the second statement let us consider a point set V =
{p1,...,pn} such that CH(V) is the triangle p;pops. For every point
p; € V, let C; be the circle with center p; and radius e, where € is
small enough for every C; not being intersected by any line defined by
two points in V, different from p;. Place r weight points uniformly
distributed on every C;, where r is a very large number; in this way
every unit angle with apex p; will contain 7 /27 weight points. Discard
the weight points that lie outside CH(V), i. e. suppose that W
is the set of all remaining weight points. In total we have |W| =
(n=3)r+m(r/2w) = (2n—5)7/2. Since the sum of internal angles in any
polygonization of V' is (n — 2), it will enclose [(n — 2)7](r/27) = (n—
2)r/2 weight points. As a fraction of the total this is (n — 2)/(2n — 5)
which for large n can be made arbitrarily close to 1/2. O

Observe that, in any polygonization P of V', the vertices of CH (V')
appear in P in the same order in which they appear in CH(V). If
e = p1po is an edge of CH(V'), we say that the vertices of P between
p1 and po form the pocket of P with lid e. Next we give a lemma on
pockets in a special situation.

Lemma 3 Let p1,po, p3 be three consecutive vertices of the convexr hull
CH(V) of V, and let q be a point interior to CH(V'). Then V has a
polygonization P enclosing q such that all edges of CH(V') are in P,
except possibly p1pe and pops.

Proof: Sort all the points interior to C H(V') angularly around py. The
points in the angular interval from p; to ¢ are given to the pocket with
lid p1ps, those in the angular interval from ¢ to p3 are given to the
pocket with lid pop3 (Figure 3). O



Figure 3: The construction in the proof of Lemma 3

It is natural to ask about general conditions that guarantee that a
point set W will be enclosed by a point set V. We next give answers
to this question related to the size of CH (V).

Figure 4: The split-and-polygonize process of Proposition 1

Proposition 1 Let V and W be point sets in the plane, with |W| = m,
such that W C CH(V) and that VU W is in general position. If
|CH(V)| > m(2[logm] + 1) then W is enclosed by V.

Proof: Using the discrete version of Borsuk-Ulam’s theorem [1], we can
simultaneously bisect W and the vertex set of CH (V) with a line L.
In the resulting pieces, which have L as dividing wall, we again bisect
the set of weight points and the set of vertices from CH(V), and the
process is iterated until W has been split into singletons. At the end



we have m pieces, and each piece K will have as boundary at most
[log m] dividing walls and at most [logm| portions from the boundary
of CH(V'). Therefore, by the pigeonhole principle, at least one of these
portions will contain three consecutive vertices p;, pi+1,Pi+2 from the
vertex set of CH(V'). Using Lemma 3, we can construct a polygon
that will use the complete boundary of K, with the possible exception
of the edges p;p;+1 and p;1+1pi+2, using as additional vertices the points
from V interior to K, and enclosing the only weight point interior to
K (Figure 4). Finally, we merge all these polygons by deleting the
dividing walls, and obtain the desired polygonization of V' enclosing
w. O

According to the above proposition, 56 vertices on CH(V) will
suffice for enclosing m = 7 weight points. This observation is used in
the next result, which gives a better bound for large values of m.

Proposition 2 Let V and W be point sets in the plane, with |W| = m,
such that W C CH(V) and that VU W is in general position. If
|CH(V)| > 56m then W is enclosed by V.

Proof: The process is similar to the proof of Proposition 1. Simulta-
neously bisect W and the vertex set of CH(V') with a line L, which
will hit two boundary edges p;p;+1 and p;p;;1. Let ¢; and g; be the
points p;p;+1NL and p;p;1 ML, respectively, which we call the dummy
vertex points. Let us consider, for example, the piece K that contains
p; and p;y1. We place three new weight points, which we call dummy
weight points very close to the midpoints of the edges p;g;, giq; and
gjpj+1 (Figure 5). From Lemma 1 it follows that these three edges
will be present in any polygonization of the vertex set of K (includ-
ing dummy vertex points) which encloses all the weight points in K,
including the dummy ones. Let A be the set of non dummy boundary
vertices in K from CH(V), and let B be the set of weight points in
K including the dummy ones; we now repeat the process taking a line
which simultaneously halves A and B.

The process is iterated until the number of weight points in each
piece is less or equal than 7. The reason for this number is that we
want the number of weight points in a piece to be smaller than it was



Figure 5: The process of Proposition 2. Solid squares indicate the
dummy weight points and open squares indicate the dummy vertices.

before the splitting; if the number before halving is w, we have

[%1+3<w = w>T.

After t splits the number of weight points in piece is at most

m 3 3 3
gt gttt
which becomes < 7 when t = [logm].

The number of resulting pieces is at most m, each one containing
at most 7 weight points and at least 56 vertices from CH(V'), due to
the hypothesis and to the even split. Therefore we can polygonize the
piece in such a way that the weight points are enclosed. In the last
step we merge all these polygons by deleting the dividing walls, and
obtain the desired polygonization of V' enclosing W'. O

Finally, we summarize the two propositions above into a single
theorem:

Theorem 2 Let V and W be point sets in the plane, with |W| = m,
such that W C CH(V) and that V. UW is in general position. If
|CH(V)| > min{(2[logm]| + 1)m,56m} then W is enclosed by V.
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