
Compass Routing on Geometric Networks

Evangelos Kranakis, School of Computer Science,

Carleton University, Ottawa, Canada K1S 5B6,

Harvinder Singh, and Jorge Urrutia,

School of Information Technology and Engineering,

University of Ottawa, Ottawa, Canada K1N 6N5

1 Introduction.

Suppose that a traveler arrives to the City of Toronto,
and wants to walk to the famous CN-Tower, one of
the tallest free-standing structures in the world. As-
sume now that our visitor, lacking a map of Toronto,
is standing at a crossing from which he can see the
CN-tower, and several streets S1, . . . , Sm that he can
choose to start his walk. A natural (and most likely
safe assumption), is that our visitor must choose to
walk first along the road that points closest in the
direction of the CN-tower, see Figure 1.

A close look at maps of numerous cities around
the world, show us that the previous way to explore
a new, and unknown city will in general yield walks
that will be close enough to the optimal ones to travel
from one location to another.

In mathematical terms, we can model the map of
many cities by geometric graphs in which street inter-
sections are represented by the vertices of our graphs,
and streets by straight line segments. Compass rout-
ing on geometric networks, in its most elemental form
yields the following algorithm:

☞

Figure 1: Finding our way to the CN-tower.

Compass Routing Suppose that we want to

travel from an initial vertex s to a destination vertex

t, and that all the information available to us at any

point in time is the coordinates of our destination,

our current position, and the directions of the edges

incident with the vertex we are located at. Starting at

s, we will in a recursive way choose and traverse the

edge of our geometric graph incident to our current

position and with the closest slope to that of the line

segment connecting the vertex we are standing at to

t. Ties are broken randomly.

For the graph shown in Figure 2, compass routing
will produce the path s, a, b, c, t from s to t.

s

a

b

c t

Figure 2: Traveling from s to t using compass routing.

In this paper we study local routing algorithms on
geometric networks. Formally speaking, suppose that
we want to travel from a vertex s to a vertex t of
a geometric network. A routing algorithm is called
a local routing algorithm if it satisfies the following
conditions:

1. At each point in time, we know the coordinates of
our starting position, as well as those of our des-
tination. In addition, we have at our disposal a
finite amount of storage where we can keep a con-
stant number of identifiers of vertices of our net-
work. Notice that this implies that at no point in
time do we have full knowledge of the topology
of our entire network.

2. Upon arrival to a vertex v (starting at s), we can
use local information stored in v regarding its
neighbors, and the edges connecting v to them.

Page 1



Using this information plus that stored in our lo-
cal memory, we choose an edge incident to v, and
traverse it until we reach its second end vertex,
unless that is v = t, in which case we stop.

3. We are not allowed to change the local informa-
tion stored at v. Notice that in particular, once
we have left a vertex, if we return to it, we will
not be able to determine that we have visited it,
unless its identifier is one of the ones we carry in
our local memory. Recall that we can remember
only a constant number of them.

The motivation for the last condition imposed on
our algorithms, is that we don’t want to leave mark-
ers, or garbage at the vertices we have already visited
while trying to reach our destination. This condi-
tion arises naturally while sending information be-
tween different nodes of a network. For example if a
server is connected to the web, we would like to avoid
keeping track of those messages that passed through
our server, this would easily use an enormous amount
of memory at heavily used nodes that could quickly
overload the memory available at those sites.

The problem we study here, has some similarity
with problems that explore graphs, except that in
most of them, i.e. finding our way out of a maze, we
leave markers indicating sections of our network we
have already visited. In this respect, our algorithms
are ecologically sound in the sense that we don’t leave
a trail of garbage during our walks. It is interesting
to point out now, that our assumption on having ge-
ometric networks is essential to our study, as it is
straightforward to prove that for arbitrary networks
in which all we have at each node is the list of the
vertices adjacent to it, no local deterministic routing
algorithms exist.

An approach to obtain local routing algorithms has
been studied for distributed networks for which com-

pact routing algorithms such as interval routing [10],
boolean routing [9] etc. have been developed. In
these models, we store at each node of a network a
copy of a distributed algorithm. Such schemes, how-
ever can be worst-case storage intensive in the sense
that large amounts of information may be required
to store per node in order to achieve all-pair short-
est path routing, see [3, 8]. From our point of view,
another perhaps more serious drawback of the pre-
vious approach, is that the topology of the networks
for which these algorithms have been developed, are
assumed to be of a specific type, e.g. Cayley graphs.
Our goal here is that of developing routing algorithms
that can be applied to existing communication net-
works whose only restriction is that they are planar

networks. It is interesting to note that, some of the
best network topology maps used by Internet Service
Providers and Internet Backbone Networks, such as
TEN-34, EuropaNET, Eunet, Qwest Nationwide Net-
work, etc. can be modeled as planar or almost planar
graphs; see [1].

Finally, we mention that routing algorithms based
in the location of our destination have been studied
within the framework of wireless communication net-
works, i.e. networks in which processors represent de-
vices similar to radio stations, two of which can com-
municate if they are sufficiently close to each other,
see [2, 7, 11]. In these problems, as in ours, the goal is
not necessarily that of finding the shortest path con-
necting two vertices of our network, but to make sure
that our information reaches its destination.

2 Compass Routing

It is not true however that compass routing will al-
ways find a path from any starting point in a geomet-
ric graph to any other. Not even in cases when our
geometric graphs are triangulations. The reader can
verify that in the geometric graph shown in Figure 3
when we try to go from s = u0 to t using compass
routing, we travel around and around the cycle with
vertex set {v0, wi; i = 0, . . . , 3}.

s=v
0

v
3

v
1

v
2

t

w
0

w
1

w
2

w
3

Figure 3: Compass routing will not reach t from ui,
i = 0, . . . , 3.

We say that a geometric graph G supports compass
routing if for every pair of its vertices s and t, compass
routing (starting at s) produces a path from s to t.

The Delaunay triangulation D(Pn) of a set of n
points Pn on the plane, is the partitioning of the con-
vex hull of Pn into a set of triangles with disjoint
interiors such that

Page 2



• the vertices of these triangles are points in Pn

• for each triangle in our triangulation the circle
passing through its vertices contains no other
point of Pn in its interior.

β

α

x

y

s

s'

p
1

p
2

c t

C

Figure 4: Routing on Delaunay triangulations.

It is well known that when the elements of Pn are
in general circular position, i.e. no four of then are
cocircular, then D(Pn) is well defined. For the rest of
this section we will assume that Pn is in general cir-
cular position. This condition can be easily removed
leaving our results unchanged. We now prove:

Theorem 2.1 Let Pn be a set of n points on the

plane, then D(Pn) supports compass routing.

Proof: Suppose that we want to go from vertex s to
vertex t in D(Pn). We will now show that if compass
routing chooses to traverse edge sv of D(Pn) then the
distance from v to t is strictly smaller than the dis-
tance from s to t. Since D(Pn) has a finite number of
vertices, this is enough to prove that we will eventu-
ally reach t. Let s− t be the line segment joining s to
t, and suppose that it intersects the triangle with ver-
tices {s, x, y}. Let C be the circle through {s, x, y}.
Let c be the center of C, and s′ the mirror image of
s with respect to the line joining c to t, see Figure 4.
Let α and β be the angles formed between x− s and
s − t, and between t − s and s − y respectively. Two
cases arise:

1. α < β. In this case, compass routing will choose
edge sx, and it is straightforward to see that the
distance between x and t is indeed smaller than
that between s and t.

2. β ≤ α. Let P1 be the intersection point between
the open line segment joining s to t and C, and
P2 be the point on C such that the distance from
P1 to P2 is the same as the distance between s
and P1. It is easy to see now that P2 lies on
the open arc C′ joining s to s′ in the clockwise
direction. However since β ≤ α y must lie on
C′, and thus its distance to t is smaller than the
distance from s to t

3 Compass Routing II

We now obtain a local information routing algo-
rithm that guarantees that any message will eventu-
ally reach its destination. We describe our algorithm
first for the case in which our geometric graphs are
convexly embedded, i.e. all the faces of our geomet-
ric graph are convex, except for the unbounded one
which is assumed to be the complement of a convex
polygon, see Figure 5. Our algorithm proceeds as
follows:

s t

<

<

<

<

<

<<

Figure 5: Routing in convexly embedded geometric
graphs.

Compass Routing II:

1. Starting at s determine the face F = F0 incident
to s intersected by the line segment st joining s
to t. Pick any of the two edges of F0 incident to
s, and start traversing the edges of S0 until we
find the second edge, say u− v on the boundary
of F0 intersected by st.

2. At this point, we update F to be the second face
of our geometric graph containing u − v on its
boundary. We now traverse the edges of our new
F until we find a second edge x − y intersected
by st. At this point we update F again as in the
previous point. We iterate our current step until
we reach t

Let F0, F1, . . .Fr be the faces intersected by st. Ob-
serve that initially F = F0, and that each time we
update F , we change its value from Fi to Fi+1, so
eventually we will reach Fk, the face containing t,
and when we traverse its boundary we will arrive at
t.

We now show how to modify our algorithm so
that it will also work for arbitrary geometric graphs.
Observe first that the vertices and edges of any
geometric graph G induce a partitioning of the
plane into a set of connected regions with disjoint
interiors, not necessarily convex, called the faces of
G. The boundary Bi of each of these faces, is a
closed polygonal in which we admit some edge of G

Page 3



to appear twice. For example in the graph shown in
Figure 6, the polygonal bounding the external face is
{v1, v2, v3, v4, v5, v6, v5, v7, v8, v9, v10, v4, v3, v11, v1},
notice that edge v3v4 is traversed twice, once from v3

to v4, and again from v4 to v3. Suppose now that we
want to travel from a vertex s to a vertex t of G. As
before calculate the line segment joining s to t, and
determine the face F = F0 incident to s intersected
by st. We now traverse the polygonal determined
by F0, checking if the last line traversed intersects
st. If it does, we calculate the distance from the
intersection point to s. Upon returning to s, (unless
we reach t in which case we stop) all we need to recall
is the point p0 at which the polygonal bounding F0

intersects st, which maximizes its distance to s. We
now travel the boundary of F0 until we reach p0, at
which point we update F to be the second face whose
face contains p0. It is straightforward to see that we
eventually reach t. Furthermore, we notice that each
edge eof G is traversed at most twice, regardless of
whether e belongs to the polygonals determined by
one or two faces of G.

For the graph shown in Figure 6, we first tra-
verse the edges of the face bounded the polygonal
v1v2v3v11v1, we then traverse the edges of the exter-
nal face, and finally the polygonal v4v5v7v8v4v12 at
which point we stop. Summarizing we have:

v7

v1

v2

v3
v4

v5

v6

v12

v8

v9

v10

v11

p
0

p
1

Figure 6: Traveling from v1 to v12.

Theorem 3.1 There exists a local information rout-

ing algorithm on geometric graphs which guarantees

that we reach our destination. Moreover, our algo-

rithm is such that we traverse a linear number of

edges.

4 Further work

The problem of deciding which planar graphs admit
geometric embeddings for which compass routing pro-
duces the shortest path between any pair of vertices
is interesting. In this direction we have proved that
trees always have such embeddings, and that some

outerplanar graphs do not. The more general ques-
tion of developing shortest path local routing algo-
rithms for specific subfamilies of planar graphs re-
mains open.

References

[1] An Atlas of Cyberspaces, http : //www.geog.
ucl.ac.uk/casa/martin/atlas/isp maps.html.

[2] Basagni, S., I. Chlamatac, V.R. Syrotiuk, and
B.A. Woodward, “A distance Routing Effect Al-
gorithm for Mobility”, Proc. MOBICOM, 1998,
76-84.

[3] P. Fraigniau and C, Gavoille, “Universal Routing
Schemes”, Journal of Distributed Computing, 10

(1997), pp. 65-78.

[4] G. N. Frederickson and R. Janardan, “Designing
Networks with Compact Routing Tables”, Algo-

rithmica, 3 (1988), pp. 171-190.

[5] G. N. Frederickson and R. Janardan, “Efficient
Message Routing in Planar Networks”, SIAM

Journal of Computing, 18 (1989), 843-857.

[6] C, Gavoille and S. Perennes, “Lower Bounds for
Shortest Path Interval Routing”, Proceedings of
SIROCCO96, pp. 88-103, N. Santoro and P. Spi-
rakis, eds, Carleton University Press, 1997.

[7] Ko, Y.B., and N.H. Vaidya, “Location-aided
Routing in Mobile ad hoc Networks”, Proc. MO-
BICOM, 1998, 66-75.

[8] E. Kranakis and D. Krizanc, Proceedings of
STACS96, pp. 529-540, C. Puech and R. Reis-
chuk, eds, SVLNCS vol. 1046, 1996.

[9] E. Kranakis and D. Krizanc,“Boolean Rout-
ing on Cayley Networks”, Proceedings of
SIROCCO96, 119-124, N. Santoro and P. Spi-
rakis, eds, Carleton University Press, 1997.

[10] Santoro, N., and R. Khatib, “Labeling and im-
plicit routing in networks” The Computer Jour-

nal, 28, 1 (1985), 5-8.

[11] Stojmenovic, I., and X. Liu, “Geographic Dis-
tance Routing in ad hoc Wireless Networks”,
Preprint, SITE, University of Ottawa, 1999.

Page 4


