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Abstract

Many protocols in distributed computing make use of dominating and connected dominating
sets, for example for broadcasting and the computation of routing. Ad hoc networks impose
an additional requirement that algorithms for the construction of such sets should be local in
the sense that each node of the network should make decisions based only on the information
obtained from nodes located a constant (independent of the size of the network) number of steps
away from it. The focus of the present paper is on providing local, constant approximation,
deterministic algorithms for the construction of dominating and connected dominating sets of
a Unit Disk Graph (UDG) with location aware nodes (i.e., nodes that know their coordinates
in the plane). The size of the constructed set, in the case of the dominating set, is shown to
be 5 times the optimal, while for the connected dominating set 7.453 + ε the optimal, for any
arbitrarily small ε > 0. These are the first local algorithms in the scientific literature whose time
complexities and approximation bounds are completely independent on the size of the network.
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1 Introduction

Many of the existing networks have become large and complex. The number of connections (links)
between nodes often remains relatively small, each node being capable to communicate, on average,
with a limited number of neighbors. Distributed algorithms implemented over such networks must
often achieve some global computational tasks, like computing good approximations of dominating
and independent sets, vertex and edge colorings, spanners, etc., despite the fact that each node is
confined to local communication. Consequently, in the last twenty years, local algorithms have been
investigated by several researchers in distributed computing. For example, in a k-local algorithm,
for a given parameter k, a node is allowed to communicate at most k times with its neighbors. Work
on this model includes Luby’s randomized independent set algorithm Luby [1985], sparse partitions
introduced by Awerbuch and Peleg [1990] and particularly the seminal work of Linial [1992].

A distributed algorithm is called local if each node of the network makes decisions based on the
information obtained uniquely from the nodes located no more than a constant (independent of the
size of the network) number of hops from it. Thus, during the algorithm, no node is ever aware of
the existence of the parts of the network further away than this constant number of hops. According
to the model of Linial [1992], local algorithm implies constant time complexity. There are several
reasons why such local algorithms are practical for wireless, ad hoc networks. The most important
include the following.

1. A solution is consistent regardless of the order in which the nodes or edges are considered in
the calculations.

2. Changes in the network outside of a fixed-size neighborhood do not influence the computation.
Moreover, adapting to a change in the network requires solely a local recalculation of the
solution.

3. It is possible to calculate only a part of the required subnetwork that is really needed without
necessarily having to calculate a complete solution (this can be important in cases of disaster
recovery).

4. Messages do not propagate indefinitely throughout the network and the algorithm terminates
in a constant number of steps.

Wireless ad hoc and sensor networks are most often modeled by Unit Disk Graphs (abbreviated
by UDGs). Nodes of a UDG are located on a plane and two nodes are considered adjacent when their
distance is at most equal to some given constant. Hence it is assumed that the wireless nodes have
equal transmission range and two nodes can communicate if they are inside each other’s transmission
range. Most NP-hard graph theory problems remain NP-hard when restricted to the class of UDGs.
However, it turns out that for the class of UDGs it is possible to design algorithms offering better
approximative solutions.

Many graph-theoretic problems do not admit local algorithms solving them, even if restricted
to the class of UDGs. Conversely, it turns out, that several of these problems become solvable in
the local setting when the network is location aware, i.e. when the graph is embedded in the plane
and each node knows its geographic position (e.g. Cartesian coordinates). Notwithstanding the cost
associated with the possession of such geographic information, it also happens that algorithms for
location aware networks are sometimes easier to design and they may lead to better time complexities
and/or approximation bounds. The recent survey of open problems by Aspnes et al. [2006] lists the
problem of local computation of dominating sets for UDGs as one of the important open problems
in distributed computing.

In this paper we consider the problems of minimum dominating set and minimum connected dom-
inating set for a location aware network, represented by a UDG graph. We design local algorithms
(i.e. working in constant time) providing constant approximation solutions to both problems. To the
best of our knowledge this is the first solution when both of these parameters, i.e. time complexity
and approximation bounds are completely independent on the size of the network.
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1.1 Related work

It is well known that the dominating set and connected dominating set problems are NP-hard, even
when restricted to the class of UDGs (cf. Clark et al. [1990]). The importance of these problems
have motivated researchers to investigate approximation schemes. For general graphs there exists an
O(log n) approximation algorithm for the minimum dominating set problem, cf. Johnson [1974], and
it is known that no polynomial-time approximation of o(log n) exists unless every problem in NP
can be solved deterministically in O(npoly log n) time, cf. Lund and Yannakakis [1994]. For general
graphs it is also known that, unless P = NP , there is an ε > 0 such that the minimum independent
dominating set cannot be approximated within a factor of O(nε), cf. Irving [1991].

The situation is quite different in the case of UDGs. Despite the fact that the dominating set
and connected dominating set problems for the class of unit disk graphs remain NP-hard, constant
approximation is possible (e.g. Marathe et al. [1994], Alzoubi et al. [2002]), even polynomial-time
approximation schemes (PTAS) are known for this case. The first such solution has been proposed
by Hunt III et al. [1998], where the geometric representation of the UDG was supposed to be part of
the input. Additionally, Nieberg and Hurink [2005] have given a PTAS for the minimum dominating
set problem of a UDG for which the geometric representation was not given.

The approximation bounds, which appear to be better when restricted to the class of UDGs
apply mainly to the centralized setting. In the distributed scenario, however, especially if the
geometric information of the input UDG is not given, the best approximation of the minimum
dominating set problem is often not better than one obtained for the case of general graphs. The
first algorithm achieving a nontrivial approximation ratio o(∆), for ∆ being the maximum node
degree, in a nontrivial time o(diam(G)) was developed in Jia et al. [2002]. Kuhn and Wattenhofer
[2005] proposed a distributed approximation based on LP relaxation techniques. Kuhn et al. [2005a]
designed a PTAS for the minimum dominating set for the class of graphs of polynomially bounded
growth. In such graphs in the k-neighborhood of any node the size of an independent set is bound
by f(k) (where f(k) is a polynomial function) and they include the class of UDGs.

Since the time of the pioneering work of Linial [1992] on locality in distributed computing many
papers on local algorithms have been published. However, despite the fact that several lower bounds
and impossibility results in distributed computing are now known (e.g. Fich and Ruppert [2003]),
most of them apply to the computational models which do not involve locality. In fact, for a long
time, the only nontrivial lower bound in local distributed computing, known to the authors of this
paper has been Ω(log∗ n) time for 3-coloring of the ring by Linial. On the other hand, it was shown
in Naor and Stockmeyer [1995] that there are nontrivial Locally Checkable Labeling (LCL) problems
having local, i.e. constant-time solutions. Peleg [2000] discussed several problems in distributed
computing in the context of a locality-sensitive approach. For the class of general graphs Kuhn
et al. [2004a] have given approximation lower bounds for covering problems as a function of the size
of the neighborhood through which each message may be propagated. In the case of UDGs (or a
more general class of bounded growth graphs), besides Kuhn et al. [2005a] mentioned above, Kuhn
et al. [2005b] have given local approximation algorithms for the class of covering and packing linear
programs. Nevertheless, the recent paper of Kuhn et al. [2006], providing the trade-offs between the
amount of local information used and the quality of the global solution for general graphs, offer the
best solution for the dominating set problem for the class of UDGs.

The local algorithms mentioned above are such that, either the approximation bounds proposed,
or the worst case time bounds obtained depend on the size n of the network. However, these
algorithms do not use the underlying geographic information. In this paper we prove that these
bounds are not always valid when the geographic information is allowed to be part of the input,
i.e. when each node is aware of its cartesian coordinates in the plane. It has been known that
the algorithms not using the geographic information are more difficult to design. Since finding
a geographic representation of a given UDG graph (cf. Breu and Kirkpatric [1998]) or even its
approximation (cf. Kuhn et al. [2004b]) is known to be NP-hard it seems that the geographic form
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of the input data is a powerful information indeed and using it may result in better algorithmic
bounds. For example, for a different problem of broadcasting in the geometric radio networks
Dessmark and Pelc [2007] have shown an O(n) time algorithm using the geographic information and
Ω(n log n) time lower bound when the geographic information was not available. With the recent
development of GPS systems the cost of geographic awareness is well justified by better algorithmic
bounds. In this paper we present two local, constant time distributed algorithms producing constant
approximations of minimum dominating sets and minimum connected dominating sets, respectively.

1.2 Preliminaries and results of the paper

Consider a graph G(V,E) with vertex set V and edge set E. A subset S of V is called dominating
set if every vertex of G is either in S or adjacent to a vertex in S. A dominating set S is called a
connected dominating set if the subgraph of G induced by S is connected. S is an independent set
if there is no edge of G between any two elements of S.

The focus of the present paper is to provide a local, constant approximation algorithm for the
construction of a dominating set as well as connected dominating set of a unit disk graph. We
assume that a wireless network consists of nodes that have the same circular transmission range of
size 1. Thus, it can be represented by a UDG with an edge connecting two nodes when they are at
most a unit distance from each other. We assume that the network is location aware, i.e. each node
of the graph knows its geometric position in the plane. We suppose that at each time unit a vertex
may send a message to each of its neighbors.

In this paper we give two deterministic, local, constant approximation algorithms. In Section 2
we give an algorithm for the construction of a dominating set of a unit disk graph. The algorithm is
shown to have a competitive ratio 5 (Theorem 1). Section 3 gives an algorithm for the construction
of a connected dominating set of a unit disk graph. This algorithm has a competitive ratio 7.453+ ε,
for any ε > 0 (Theorem 2). To the best of our knowledge these are the first such algorithms whose
time complexities and approximation parameters are independent of the size of the network.

2 Local Algorithm for Dominating Set of a UDG

As previously noted, given a UDG a local algorithm decides to include a node into a dominating
set using a fixed size neighborhood independently of decisions possibly taken at other nodes. Thus
the algorithm could actually construct a very large dominating set due to symmetries that could be
present in the graph. We therefore need to make sure that potential symmetries in the graph are
broken in some way. Using the fact that the nodes are aware of their coordinates in the plane we
associate with each node a class number that depends on the position of the node within a regular
tiling of the plane. As depicted in Figure 1, for the tiling used by our algorithm (see Algorithm 1)
each tile consists of 12 hexagons of unit diameter and each hexagon of the tile represents a single
class. In a hexagon we assume that its right-hand side boundary, starting from the top apex of the
hexagon up to the bottom apex of the hexagon belongs to the hexagon; thus, only the top apex and
the two right upper apexes are considered to belong to the hexagon (see Figure 2).

We assume that the tiling starts by placing one tile with the center of the hexagon of class
number 1 in coordinates (0, 0), while other tiles are placed so that the hexagon of Class 3 is made
adjacent to hexagons of classes 7 and 10 or the hexagon of Class 11 is made adjacent to hexagons
of Classes 8 and 4, etc. Figure 3 depicts the tiling of the plane that is used in our algorithm. The
following Lemma 1 provides an important separation property of the hexagons of the tiling that is
useful in the sequel.

Lemma 1 In the tiling of the plane given above, any two points of the plane that are of the same
class, but belong to two different hexagons, are at Euclidean distance greater than 2. Moreover,
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Figure 1: Image depicts a tile divided into 12 hexagons of diameter 1 and the class numbering
associated with the hexagons.
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Figure 2: Image depicts the dimensions of the hexagon, while the “bold” lines illustrate the boundary
that belongs to this hexagon.

given the coordinates of a point P in the plane, one can determine the class number of P using a
calculation of constant cost.

Proof. Without loss of generality consider the hexagon of Class 1 in the central tile of Figure 3 and
the hexagons of Class 1 in the six adjacent tiles. Figure 2 depicts the lengths of a unit hexagon which
are relevant to the calculations. In particular, the perpendicular distance x from the center of the
hexagon to the opposite side is clearly equal to

√
3/4. It is easy to calculate from Figure 4 that if the

coordinates of the hexagon X at the center are (a, b) then the coordinates of the neighboring hexagons
of the same class must be A = (a, b + 3), B = (a + 3

√
3/2, b + 3/2), C = (a + 3

√
3/2, b − 3/2), D =

(a, b − 3), E = (a − 3
√

3/2, b − 3/2), F = (a − 3
√

3/2, b + 3/2). It is also easy to verify that all
points within these six hexagons are at distance two or more from the hexagon in the central tile.
Moreover, it is simple to determine the lattice points whose centers are the hexagons of class 1 as
coordinate translations of the class 1 hexagons. Since only the top apex and the right upper apex
belong to a tile, there is no pair at distance exactly two.

The tiling of the plane depicted in Figure 3 is achieved by appropriate geometric translation of
the basic tile in Figure 1. Due to the symmetry of the tiling used, the distance requirements just
proved for class 1 hexagons apply to any other class number. Moreover, given the coordinates of a
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Figure 3: Tiling of the plane with tiles consisting of 12 hexagons each.

node P , one can calculate from its coordinates, using only a local calculation of constant cost, the
unique class number the node belongs to. This completes the proof of Lemma 1.

As a consequence of Lemma 1, if all nodes of a network are aware of the tiling being used, then
any node can calculate from its own coordinates and using only a local calculation of constant cost,
the unique class number the node belongs to. In the following discussions, this knowledge of the
tiling as well as class numbering being used is assumed to be available to each node. Also note that
this is a constant size information.

2.1 Construction of the dominating set

The main idea of our algorithm for computing locally a dominating set is as follows. Nodes determine
their class number and acquire the class numbers of all their neighbors. In each hexagon, dominators
are determined on the basis of unassigned neighbors of minimum class number closest to the center
of the hexagon under consideration. More precisely, to calculate a dominating set of a unit disk
graph G, each node of G executes Algorithm 1.

Let D be the set of all nodes of G designated by Algorithm 1 as dominators. In the next few
lemmas we will discuss some properties of Algorithm 1 and of the associated dominating set D. We
will conclude with the main Theorem 1. The first lemma shows that the algorithm is local in the
sense that it terminates in constant time and the actions of nodes in a hexagon are influenced only
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Figure 4: Six hexagons A,B, C, D, E, F (indicated with a gray bullet at their center) “adjacent” to
a given hexagon X (also indicated with a gray bullet at its center), all in the same class. It is clear
from the picture that |XY | = 6

√
3/4 and |Y B| = 3/2.

by actions of nodes a constant number of hops away.

Lemma 2 The selection of a dominator in a hexagon of Class i by Algorithm 1 depends only on
information received from nodes that are at most i− 1 hops away from nodes in the given hexagon.

Proof. The simplest way to see the claim is using induction on i. To begin, it is clear that the
selection of a dominator of nodes in a hexagon of class 1 is done by examining only the nodes inside
this hexagon. Let k be an integer greater than 1 and assume that for any j < k the calculation
of a dominator in a hexagon of class j depends on information from nodes that are at distance at
most j − 1 hops from the given hexagon. The selection of a dominator in a hexagon of class k in
Step 5 is done after nodes of class j < k that are one hop away complete their calculations, and by
assumption this requires at most k−1 additional hops. In Figure 5 we depict as shaded all hexagons
that are involved in calculating a dominator of a hexagon of class 6. This completes the proof of
Lemma 2.

Lemmas 3 and 4 are concerned with domination and independence of the resulting set of vertices
selected by the algorithm.

Lemma 3 Every vertex of G is either in D or adjacent to a vertex in D. Thus, set D is a dominating
set of G.

Proof. Let X be a node of G that is not in D. If X is of class 1, then one of the nodes in the
hexagon containing X is designated as a dominator in Step 3. Since the diameter of a hexagon is
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Algorithm 1 Local Dominating Set Algorithm
// Algorithm is executed independently by each node. Execution starts either
// when a node needs to find its dominator, or if it receives a request to find
// a dominator in its hexagon.

1: Determine your class number using your coordinates and the tiling information.
2: Find all your neighbors and obtain their coordinates and class numbers.
3: If your class number is 1 then the node N in your hexagon closest to the center of it is designated

as a dominator. Continue to Step 6.
4: Find whether there is a node in your hexagon that has no neighbor of lower class. If such nodes

exist then the one of them that is closest to the center of the hexagon is designated as a
dominator. Continue to Step 6.

5: If you have a neighbor M of a lower class number then send to M a request to execute the
algorithm for finding its dominator. Once the replies from all neighbors of lower class number
are received, determine if you are already dominated. Inform your neighbors in your hexagon
of the result. When all nodes of your hexagon finish this calculation, node N in your hexagon
closest to the center and not dominated yet is designated as a dominator, if such a node exists.

6: Inform all your neighbors that a dominator selection in your hexagon is completed and give them
its result.

7: Terminate your execution of the algorithm.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 

!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"

#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#

$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$�$

%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%

&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&

'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'

(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(

)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)

*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*
*�*�*�*�*�*�*�*�*

+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+�+

,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,

-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-
-�-�-�-�-�-�-�-�-

.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.
.�.�.�.�.�.�.�.�.

/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/

0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0

1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1

2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2

3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3

4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4

5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5

6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6

7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7

8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8

9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9

:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:

;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;

<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<

=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=

>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>

?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?

@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@

A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A
A�A�A�A�A�A�A�A�A�A

B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B
B�B�B�B�B�B�B�B�B

C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C�C�C

D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D�D

E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E
E�E�E�E�E�E�E�E�E�E

F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F

G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G
G�G�G�G�G�G�G�G�G�G

H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H
H�H�H�H�H�H�H�H�H

I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I
I�I�I�I�I�I�I�I�I�I

J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J
J�J�J�J�J�J�J�J�J

K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K
K�K�K�K�K�K�K�K�K

L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L
L�L�L�L�L�L�L�L�L

M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M�M

N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N�N

O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O
O�O�O�O�O�O�O�O�O

P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P
P�P�P�P�P�P�P�P�P

Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q

R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11 1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

111

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

Figure 5: Hexagons involved in calculating a dominator of Class 6.

1, node X is dominated by the designated node. If X is of class i > 1 and at least one node of its
hexagon is not dominated by a node of an adjacent lower class, one of the nodes in this hexagon is
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designated as a dominator in Step 4 of the algorithm. Since the diameter of a hexagon is 1, node X
is dominated by the designated node. This completes the proof of Lemma 3.

Lemma 4 The Euclidean distance between any two nodes of D is more than one. Thus D is an
independent set of G.

Proof. Every hexagon contains at most one element of D. According to Lemma 1, the distance
between any two vertices of different hexagons of the same class is greater than 2. Thus, the
dominators selected in hexagons of class i for any fixed i are pairwise independent. In a hexagon
of class i > 1, a dominator is designated in Step 4 of the algorithm only as a vertex that is not
dominated by an adjacent element in D of lower class. Thus the distance of a dominator belonging
to a class i to dominators of class j < i is more than 1. This completes the proof of Lemma 4.

We now summarize the properties of the dominating set calculated by Algorithm 1 in the following
theorem.

Theorem 1 Let G be a unit disk graph and D be the set of dominators calculated by Algorithm 1.
D is a dominating, independent set of G and for any dominating set D∗ of G, we have |D|/|D∗| ≤ 5.
Thus the competitive ratio of Algorithm 1 is 5.

Proof. According to Lemmas 3 and 4, D is both a dominating and an independent set of G. Let
D∗ be a minimum dominating set of G and N be a vertex of D∗. Consider the elements of D that
are dominated by N , i.e., the nodes of D that lie in the circle of radius 1 around N . If one of the
elements of D is equal to N then by Lemma 4 no other element of D can be in this circle. If no
element of D is equal to N and there are 6 or more such elements of D, then there are at least two
elements, say X1 and X2, such that the angle ∠X1NX2 is at most π/3. However this implies that
the distance between X1 and X2 is at most 1, a contradiction to Lemma 4. Thus we can conclude
that an element of D∗ dominates at most 5 elements of D. This implies that |D|/|D∗| ≤ 5. This
completes the proof of Theorem 1.

2.2 Lower bound example

Figure 6 depicts an example of a set of points so that the ratio between the minimum dominating
set and the dominating set D calculated by Algorithm 1 is greater than 4. If the vertices of degree
5 are placed in hexagons of high class number, the dominating set D computed by the algorithm
includes only the vertices of degree 1 and 2 while the optimum one consists of the vertices of degree
5.

3 Local Algorithm for Connected Dominating Set of a UDG

Our construction of a connected dominating set starts with the dominating set constructed by the
algorithm of Section 2 and we make it connected by adding selected vertices, called bridges. We first
need to introduce some notation and study properties of optimal connected dominating sets.

Let OCDS denote an optimal connected dominating set, i.e. the minimal subset of vertices which
induces a connected subgraph of a given unit disk graph G and such that any vertex of G has a
neighbor in OCDS. Consider a Minimum Spanning Tree T of OCDS, i.e. a connected subgraph
of G containing the OCDS and such that it has the smallest possible sum of lengths of its edges.
Note that the minimal angle between any two incident edges (x, y) and (x, z) of T is π/3, otherwise
edge (y, z) would be used in T instead of (x, y) or (x, z). Suppose that T is rooted at some vertex
r, of degree smaller than six. We denote by Dv the disk of radius 1 centered at v. Consider the
dominating set D constructed in Section 2. We will find an upper bound on the number of vertices of
D. For this purpose we will charge to vertices of T small subsets of D as follows. Suppose (u, v) ∈ T ,
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Figure 6: Graph realizing competitive ratio greater than 4

i.e. u is the parent of v in T . We charge to v all vertices centered inside Dv except those which are
inside Du. Hence the number dv of vertices charged to v is dv = |D ∩ (Dv \Du)|. Note that, since
T contains a dominating set of the UDG, each vertex of D is charged to at least one vertex of T .

Furthermore, let Ev be the set of children of v, such that there is no vertex of D reachable from
both v and a vertex of Ev, i.e., Ev = |{w : w is a child of v in T and D ∩ (Dv ∩Dw) = ∅}|. Denote
ev = |Ev|.

Lemma 5 Let T be a Minimum Spanning Tree with root r of an optimal connected dominating set
of UDG G with dv, ev defined for any vertex v of T as above.

1. If v is different from r then dv + ev ≤ 4.

2. dr + er ≤ 5.

Proof. To prove part 1 of the lemma, let us first consider the vertices of D inside Dv, counted in
dv. Firstly, vertices from Du ∩Dv, are charged to du, hence a circular sector of angular size at least
2π/3 of Dv does not contain any vertex of D counted in dv (see Figure 7). As D is an independent
set, for any x, y ∈ D ∩ Dv, the angle ∠xvy > π/3. Similarly, since angles between edges in T are
greater or equal to π/3, for any x, y ∈ Ev, the angle ∠xvy ≥ π/3. Finally, by definition of Ev, for
any x ∈ D, y ∈ Ev, the angle ∠xvy > π/3. Since in the angular region around v of size smaller
than 2π/3 we can place at most four points such that any two of them, say x, y, form an angle
∠xvy > π/3 we have dv + ev ≤ 4.

To prove part 2 of the lemma, we similarly observe that dr +er ≤ 5. Indeed, since er ≤ 5, in case
dr + er > 5 the sum of angles formed by the vertices from (D ∪ Er) ∩Dr would be strictly greater
than 2π.

Corollary 1 Let f be the number of edges {u, v} in T such that D ∩ Du ∩ Dv 6= ∅. Then |D| ≤
3|OCDS|+ 2 + f .

Proof. Indeed, from the definition of f and ev we derive that

|OCDS| − 1− f =
∑

v∈OCDS

ev.
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Figure 7: Adjacent vertices of UDG have a common circular sector of size at least 2π/3 of the unit
disk.

Summing over all v ∈ OCDS we get

|D| =
∑

v∈OCDS

dv

= dr +
∑

v∈OCDS\{r}

dv

≤ 1 +
∑

v∈OCDS

(4− ev)

= 4 · |OCDS|+ 1−
∑

v∈OCDS

ev

= 4 · |OCDS|+ 1− (|OCDS| − 1− f)
= 3 · |OCDS|+ 2 + f

This completes the proof of the corollary.

Note that the competitive ratio of D with respect to the OCDS is better than the one from
Theorem 1 since f can be at most |OCDS| − 1.

Just like the dominating set previously considered in Section 2, we consider a tiling of the plane
with tiles. Each tile consists of c hexagons of radius 1 that are being assigned different class numbers
and such that hexagons of the same class number are at distance at least k from each other. The
dominating set in Section 2, required tiles with c = 12 hexagons in order to achieve distance k = 2
(see Lemma 1). The tiles we consider in this section achieve distances k bigger than 2 and it can be
proved easily that in this case the required class number c is in Θ(k2).

Intuitively, the algorithm for constructing a connected dominating set is as follows. Find a
dominating set using Algorithm 1 and select a coordinator vertex in each non-empty hexagon using
some election procedure. The coordinators are responsible for augmenting the existing dominating
set by adding bridges, each bridge (one or two vertices) joining at least two connected components.
We suppose that each vertex will communicate information at distance less than k hops from it.
Each hexagon is assigned a class number (from 1 to c) so that vertices of two hexagons of the same
class number are at least at distance k from each other.

The algorithm consists of two phases, each of which consists of c rounds. In the first phase,
the algorithm repeatedly inserts single vertex bridges, while in the second phase, the double vertex
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bridges are added, eventually resulting in the set becoming connected. In round i, 1 ≤ i ≤ c,
coordinators from hexagons of class i will act, by trying to add connecting bridges within their
hexagons. We suppose that each coordinator takes a decision about adding a bridge based on its
knowledge of the part of the UDG at distance less than k from it. Hence, when a coordinator decides
to add a bridge it is possible that the bridge is not joining two components from global perspective
but rather two components as perceived from the local, limited perspective of the coordinator, and
the resulting graph thus may contain some cycles. Algorithm 2 which is described below is a more
formal outline of this idea.

Algorithm 2 Local Algorithm for Connected Dominating Set
1: Compute the dominating set D applying Algorithm 1.
2: Select a coordinator vertex in each non-empty hexagon and determine its colour c based on the

coordinates.
// The rest of the algorithm is specified for a hexagon H.

3: Set the local set of selected vertices SH to be the vertices of D at distance less than k hops from
H (i.e. each vertex of D is broadcasted up to distance k).

4: for bridgesize= 1 to 2 do
5: for round= 1 to c do
6: if class(H) = round then
7: Determine all connected components of the UDG induced by the vertices of SH .
8: repeat
9: Find a set B of vertices of H, such that |B| = bridgesize and such that adding B

to SH connects at least two different connected components.
10: Add B to SH and locally recompute the connected components.
11: until no such set B can be found
12: Broadcast the newly added vertices up to distance k hops.

// Hexagon H has done its job for this bridgesize, now it only participates in the
broadcasts and updates its SH .

13: else
14: for each non-empty hexagon H ′ at distance at most k do
15: wait for a message containing the vertices V ′

H added in H ′.
16: SH ← SH ∪ V ′

H

17: end for
18: end if
19: end for
20: end for
21: The union of SH for all hexagons H is the desired connected dominating set S.

The complexity analysis of this algorithm follows in the sequel. However, note that previous
“global algorithms” made use of a “globally constructed spanning tree” in order to find one-node
bridges. We can no longer use a global algorithm to ensure that all our bridges consist of a single
node. Rather we can use the structure of the dominating sets to show that if we first add all the
single node bridges then we can limit the number of the remaining two-node bridges not just by the
size of the dominating set, but rather by the size of the connected dominating set.

Lemma 6 Consider the set S ′ =
⋃

H∈H S′
H , where S′

H is the set of selected vertices of hexagon H
after the first phase, and H is the set of all non-empty hexagons. Consider the MST T of the OCDS
used in Lemma 5. Let f be the number of edges {u, v} of T such that D ∩ (Du ∩Dv) 6= ∅. Then the
UDG of S ′ has at most |OCDS| − f connected components.

Proof. Consider the disk Dv of radius 1 centered at a vertex v of the OCDS. After the first phase,
all vertices of D ∩Dv must belong to the same component. Indeed, at some time the hexagon H of
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v would have been considered – if those vertices were not in the same component at the time v was
considered on line 12, v would have been added to SH , connecting them all. This means that there
may be at most |OCDS| components, each corresponding to a vertex of OCDS. However, for each
edge {u, v} counted in f it follows that the components of u and v are connected.

Lemma 7 S as constructed by Algorithm 2 is a connected dominating set.

Proof. Since by construction D ⊆ S and D is a dominating set, it is sufficient to prove that S
is connected. Suppose, to the contrary, that it has at least two components, say S1 and S2. Since
the original UDG G is connected, there must be a path in G connecting S1 and S2. Consider the
shortest such path, say π. Colour vertices of this path white if they are adjacent to a dominating
vertex from S1, and black otherwise. As S is dominating set, each vertex of π will be coloured.
Since the endpoints of π are of different colour, there must be an edge {u, v} such that u and v are
of different colour. However, at some moment the algorithm would have considered (at line 12 or
15) adding one or both of these vertices, thus connecting S1 and S2.

We will also use the following lemma from Funke et al. [2006]:

Lemma 8 The size of any independent set in a unit disk graph G is at most 3.453 · |OCDS|+8.291

We are now ready to prove the main theorem of this section.

Theorem 2 Let k > 3 be an integer and S be the connected dominating set computed by Algorithm 2
with parameter k. Then

|S| ≤
(

7.453 +
15

k − 3

)
· |OCDS|+ 16.6

k − 3
. (1)

Proof. We can view S as obtained from D by sequentially adding vertices (or pairs of vertices):

1. the vertices are added in the order according to the class number of the hexagon that contained
them,

2. within each hexagon the vertices are added in the order they were considered by the algorithm,
and

3. the order of the vertices added by different hexagons of the same class number does not matter.

Consequently, we have a sequence D = S0,S1, . . . ,Sr = S. For each Si we can define V Gi as the
graph obtained by applying the Local Minimal Spanning Tree construction of Chávez et al. [2006]
to the UDG of Si. Since different hexagons of the same color are at least at distance k away from
each other, each graph V Gi is a planar spanner of Si and each of its faces is of size at least 2k. We
will denote by V G the graph obtained by considering the final S := Sr.

We say that an addition of a node (or a pair of nodes) to obtain Si from Si−1 is idle if the
number of connected components in V Gi is equal to the number of components in V Gi−1. Let us
denote by V0 the size of D, V ′

1 and V ′
2 be the numbers of additions of single nodes and pairs of nodes,

respectively, which are not idle. Similarly, let V ′′
1 and V ′′

2 be the numbers of single and double-node
idle additions, respectively. Let V denote the number of nodes of V G (i.e. V = |S|), E denote the
number of edges and F the number of faces. From Euler’s formula we have that

F + V = E + 2. (2)

Therefore, from the way S was constructed, we have

V = V0 + V ′
1 + V ′′

1 + 2V ′
2 + 2V ′′

2 . (3)

Note that our algorithm adds a vertex (or pair of vertices) only when they connect at least two
connected components (when looking up to distance k − 1). Therefore, only two or three edges are
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added to V Gi−1 in order to get V Gi (depending on whether a single vertex bridge or a two-vertex
bridge has been added). Combining this observation with the definition of idle additions, we have

E ≥ V − 1 + V ′′
1 + V ′′

2 . (4)

As initially there were V0 components (recall that D is an independent set) and at the end V G
is connected, from the definitions of V ′

1 and V ′
2 we have

V ′
1 + V ′

2 ≤ V0 − 1. (5)

By Lemma 6
V ′

2 ≤ |OCDS| − f − 1. (6)

Finally, as each face is of size at least 2k and the sum of face sizes is exactly 2E we get

kF ≤ E. (7)

Substituting for F into Identity 2 according to Inequality 7 we get E/k + V ≥ E + 2 and therefore
V − 2 ≥ E(1− 1/k). After substituting for E according to Inequality 4 and using some elementary
calculations we get

V

k − 1
− 1 ≥ V ′′

1 + V ′′
2 . (8)

Substituting all of this into Equality 3 we get

V ≤ V0 + V ′
1 + V ′

2 + V ′
2 + 2V ′

1 + 2V ′′
2

≤ V0 + V0 − 1 + |OCDS| − f +
2V

k − 1
− 2.

Using Corollary 1 we obtain

V ≤ 2V0 − 3 + |OCDS| − f +
2V

k − 1

≤ V0 − 1 + 4|OCDS|+ 2V

k − 1
+ 1.

Hence, by Lemmas 4 and 8 we get

V ≤ 7.453 · |OCDS|+ 2V

k − 1
+ 8.291, (9)

which yields

|S| = V

≤ 7.453 · |OCDS|+ 8.291
1− 2

k−1

≤
(

7.453 +
15

k − 3

)
· |OCDS|+ 16.6

k − 3

and concludes the proof of the theorem.

Algorithm 2 does not produce an optimal connected dominating set of a given graph. It is rather
obvious that a strictly local algorithm cannot produce an optimal connected dominating set even
for a long cycle. In some cases we can lower the number of vertices in our connected dominating set
by adding one more phase to Algorithm 2: after the addition of bridges is finished we can check for
each vertex of D whether it is still needed for domination, following the order of the class numbers,
and remove it from the connected dominating set if it is not needed for domination and it does not
create a disconnection using the neighbourhood of size k − 1. However, this does not improve the
competitive ratio of Theorem 2.
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4 Conclusion

This paper gives the first ever local algorithms for constructing dominating and connected dominat-
ing sets of unit disk graphs with location aware nodes. The competitive ratios are 5 and 7.453 + ε,
respectively. Although it was shown that the competitive ratio of first algorithm could not be im-
proved further, we do not have a lower bound on the competiive ratio of the second algorithm. This
also poses a rather fundamental question about the “power of geometric awareness” and its impact
on distributed computing, which is expected to have repercussions on future research studies on this
subject.
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