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Ruy Fabila-Monroy† David Flores Peñaloza † Clemens Huemer ‡ Ferran Hurtado ‡

Jorge Urrutia † David R. Wood ‡

Abstract

In this paper we study the chromatic number of the
following four flip graphs: A graph on the perfect
matchings of the complete graph on 2n vertices and
three graphs on the triangulations, Hamiltonian geo-
metric non-crossing paths, and triangles respectively
of a point set in convex position in the plane. We
give tight bounds for the latter two cases and upper
bounds for the first two.

1 Introduction

Given a class C of combinatorial objects of a given
kind and a transformation (flip) between these ob-
jects, a flip graph is defined as the graph whose vertex
set is C, where two vertices are adjacent whenever they
differ by a flip. Flip graphs have received considerable
attention in the past. Properties such as Hamiltonic-
ity, connectivity and diameter have been widely stud-
ied [4, 6, 12, 15]. This interest is very likely due to the
practical applications of these properties. For exam-
ple, Hamiltonicity allows for rapid generation of the
given combinatorial objects. We refer the interested
reader to the survey [1].

The chromatic number χ(G) of a graph is the small-
est integer such that it is possible to assign to each
vertex of G an integer i ≤ χ(G) such that adjacent
vertices of G receive different integers. The chromatic
number of flip graphs has received little attention,
with only a few papers concentrating on this param-
eter (see for example [5]). In this paper we study
the chromatic number of a flip graph on the perfect
matchings of the complete graph and three flip graphs
for sets of points in convex position, that is, they form
the set of vertices of a convex polygon on the plane.

For flip graphs on convex point sets, we determine
the exact chromatic number for geometric Hamilto-
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de México (ruy@ciencias.unam.mx, colegadavid@gmail.com,
urrutia@math.unam.mx). Supported by CONACYT of Mex-
ico, Proyecto SEP-2004-Co1-45876, and PAPIIT (UNAM),
Proyecto IN110802.

‡Departament de Matemàtica Aplicada II, Uni-
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Figure 1: G5

nian paths (Section 2), we define a certain flip graph
on its triangles of and determine its chromatic num-
ber up to a constant multiplicative factor (Section 3),
and we give an upper bound on the chromatic num-
ber for triangulations (Section 5). We also consider
a flip graph on the the perfect matchings of the com-
plete graph on 2n vertices and give an upper bound
on its chromatic number (Section 4). It should be
stressed that in the case of matchings, no geometry is
considered. We conclude with some open problems in
Section 6.

Throughout the rest of the paper S will denote a
set of n points in convex position in the plane.

2 Geometric Non-Crossing Hamiltonian Paths

Let Gn be the graph whose vertex set is the set of
all non-crossing geometric paths with vertex set S.
Two paths Γ1 and Γ2 in V (Gn) are adjacent if and
only if there exist edges e in Γ1 and f in Γ2 such that
Γ2 = Γ1 − e + f . We say that Γ2 is obtained from
Γ1 by flipping e and f . We point out that e and f

may intersect. Note that Rivera-Campo and Urrutia-
Galicia [14, 17] proved that Gn is Hamiltonian. We
determine χ(Gn).

Theorem 1 χ(Gn) = n for n ≥ 3.

Proof. Since G3 ≃ K3, assume n ≥ 4. For i =
0, . . . , n− 3, let Di be the set of paths in V (Gn) that
contain exactly i non-convex hull edges (see Figure 1).
Note that the set D0 consists of n paths, all of whose
edges are on the convex hull of S. Each element of D0

is obtained by removing one edge of the convex hull
of S. Clearly any two elements of D0 are adjacent in
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Gn, and D0 thus induces a complete subgraph of Gn.
This proves that χ(Gn) ≥ n.

We now give a method to obtain an n-coloring of
Gn. Note that each time we flip an edge of a path in
Di, we obtain a path in either Di−1, Di or Di+1. Since
D0 induces a clique of size n in Gn, in any n-coloring
of Gn we assign a different color to each element in
D0. We now show how to extend an n-coloring of the
elements of D0 to an n-coloring of Gn. Observe that
every path Γ1 in D1 is adjacent to exactly two paths
in D0. Furthermore if Γ1 and Γ2 lie in D1, then both
are adjacent to the same two paths of D0, or there is
no path in D0 adjacent to both of them. Since we are
assuming n ≥ 4, for each pair of adjacent paths in D1

there are at least two colors we can assign to them,
different from the colors assigned to their neighbors in
D0. Thus we can extend our coloring of D0 to one of
D0 ∪ D1. Observe next that for for i ≥ 2, there is no
pair of adjacent paths in Di, and that every path in
Di is adjacent to exactly two elements in Di−1. Thus
any n-coloring of D0∪. . .∪Di−1 can be extended to an
n-coloring of D0∪ . . .∪Di, i = 2, . . . , n−3. Therefore
χ(Gn) = n. �

3 Triangle Graph

We introduce a new flip graph G△(n), whose vertex
set is the set of triangles with endpoints in S, two
of which are adjacent if they share an edge and their
interiors are disjoint. Assume that the elements of S

are labeled {0, . . . , n − 1} clockwise along the convex
hull of S, and let △(i, j, k) denote the triangle with
vertex set {i, j, k}.

Lemma 2 χ(G△(n)) ≥ log2(n − 1).

Proof. Let H be the subgraph of G△(n) induced by
all triangles containing 0 as a vertex. Suppose that
H has a coloring with k colors. Let Aj be the set
of colors assigned to the triangles △(0, i, j) with i <

j. Observe that for r 6= s, Ar 6= As. This follows
from the fact that if r < s, △(0, r, s) is adjacent to
every triangle △(0, k, r) with k < r; thus the color
assigned to △(0, r, s) is in As but not in Ar . The
number of possible color sets must be at least n − 1.
Therefore 2k ≥ n−1, k ≥ log2(n−1) and χ(G△(n)) ≥
log2(n − 1). �

The subgraph H of G△ considered in the proof of
Lemma 2 is known as the shift graph, and its chro-
matic number is well known [16].

Given two graphs G and H , a homomorphism from
G to H is a mapping from the vertex set of G to the
vertex set of H such that adjacent vertices of G are
mapped to adjacent vertices in H . It is well known
and straightforward to see that if there is a homomor-
phism from G to H , then the chromatic number of G

is less than or equal to the chromatic number of H .

pi

pj

pk

pl

pi+1

pj+1

pk+1

1

Figure 2: The homomorphism between G and G△(m)

Lemma 3 Let G be the subgraph of G△(2m) in-

duced by all the triangles without edges on the convex

hull of S. Then χ(G) ≤ χ(G△(m)).

Proof. Color the vertices of S red and blue such that
no two consecutive vertices have the same color. Note
that the subgraph H of G induced by the blue points
is isomorphic to G△(m). We now map every triangle
t in V (G) to a triangle such that all its vertices are
blue as follows: if i is a red vertex of t, substitute
it by the blue vertex i + 1, addition taken mod n.
Observe that triangles whose vertices were already all
blue are mapped onto themselves. Since adjacent tri-
angles in G are mapped to adjacent triangles in H ,
this mapping induces a homomorphism from G to H

(see Figure 2). The result follows. �

Lemma 4 χ(G△(2m)) ≤ χ(G△(m)) + 3.

Proof. We use a similar technique to that used in
Theorem 1 of Section 2. Let G′ be the subgraph of
G△(2m) induced by all those triangles of S that have
at least one edge on the convex hull of S. Let τ =
△(i, i+1, j) be any such triangle. S−{j, i, i+1} can be
partitioned into two maximal subsets of consecutive
points, namely the points from i+1 to j and the points
from j to i, which we denote by lτ and rτ respectively.
We define the “order” of τ to be min{|lτ |, |rτ |}. For
i = 0, . . . ⌈n−2

2
⌉, let Di be the subset of V (G′) of all

triangles of order i. Note that the subgraph of G′

induced by D⌈n−2

2
⌉ has maximum degree 2 and there-

fore chromatic number at most 3. Note that in gen-
eral every vertex of Di is only adjacent to at most
2 vertices in Di+1 ∪ . . .D⌈n−2

2
⌉. Thus any 3-coloring

of Di+1 ∪ . . .D⌈n−2

2
⌉ can be extended to a coloring

of Di ∪ Di+1 ∪ . . .D⌈n−2

2
⌉. Therefore χ(G′) = 3. By

Lemma 3, we can color G with χ(G△(m)) colors and
G′ with four different colors. This produces a coloring
of G△(2m) with χ(G△(m)) + 3 colors. �
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We now have:

Theorem 5 log2(n − 1) ≤ χ(G△(n)) ≤
3⌈log2(n)⌉ − 6.

Proof. Let F (k) = χ(G△(2k)). By Lemma 4,
F (k) ≤ F (k − 1) + 3. Observe that χ(G△(4)) = 2.
Thus F (k) ≤ 3k − 6 and therefore χ(G△(n)) ≤
3 log2(n) − 6.

For n 6= 2k, let m be the smallest power of 2 greater
than n. Since in general G△(n) is a subgraph of
G△(n + 1), we can color the vertices of G△(n) with
χ(G△(m)) ≤ 3 log2(m)−6 = 3⌈log2(n)⌉−6 colors. �

4 Perfect Matchings of K2n

Given any graph G, we define M(G) to be the graph
whose vertex set is the set of perfect matchings of G,
where two vertices of M(G) are adjacent whenever
the symmetric difference of the corresponding perfect
matchings is a cycle of length 4. M(G) is known as
the flip graph of the perfect matchings of G.

We now give an upper bound on χ(M(K2n)). To
do so, we need the fact that χ(M(Kn,n)) = 2. In [7],
the flip graph of the non-crossing geometric match-
ings of a set of 2n points in convex position is shown
to be bipartite. This graph is actually a subgraph
of M(Kn,n). Using the same arguments as in [7] it
is possible to show that M(Kn,n) is bipartite. For
details, the interested reader can see [7].

Theorem 6 χ(M(K2n)) ≤ 4n − 4 for n ≥ 2.

Proof. Label the vertices of V (K2n) = {1, . . . , 2n}.
For every perfect matching M of K2n, let UM = {i ∈
V (K2n)|(i, j) ∈ M and i > j} and DM = {i ∈
V (K2n)|(i, j) ∈ M and i < j}. Assign to every par-
tition UM , DM of V (K2n) given by a matching M

the number iM =
∑

i∈DM
i mod 2n − 2. Given two

sets U , D, let MU,D be the set of matchings M such
that UM = U and DM = D. The subgraph HU,D of
M(K2n) induced by MU,D is a subgraph of M(Kn,n),
and is thus 2-colorable. Color the vertices of H with
colors iM and i

′

M .

We show now that if two matchings M and M ′

differ by a flip, they receive different colors.

Two cases arise: UM = UM ′ and DM = DM ′ or for
some i < j, UM = UM ′ − i+ j and DM = DM ′ − j+ i.
In the first case, M and M ′ belong to HUM ,DM

and
thus receive different colors.

In the second case, UM 6= UM ′ − i + j, and the
colors assigned to M and M ′ are different. Thus we
obtain a coloring of the vertices of χ(M(K2n)) with
2(2n − 2) = 4n − 4 colors. �

Figure 3: GT (5) and GT (6)

5 Triangulations of a Convex Polygon

Finally, we consider a flip graph on the triangulations
of S. Let GT (n) be the graph whose vertex set is the
set of triangulations of S, where two triangulations
T1 and T2 are adjacent in GT (n) whenever they differ
by one edge flip; that is, there exist edges e ∈ T1 and
f ∈ T2 such that T2 = T1 − e + f (see Figure 3).

Much is known about GT (n). This is probably due
to the fact that there is a bijection between triangula-
tions of the n-gon and binary trees with n− 2 nodes.
A flip in a triangulation corresponds to a rotation in
its corresponding binary tree.

Lucas [12] proved that GT (n) is Hamiltonian.
Sleator et al. [15] proved that the diameter of GT (n)
is 2n − 10. Lee [10] proved that the automorphism
group of GT (n) is the dihedral group of order 2n and
can be realized as an (n−3)-dimensional convex poly-
tope called the associahedron. Most of these results
are proved again in [8] using a unifying framework
called the tree of triangulations.

Of the flip graphs we have studied, GT (n) is the one
for which we have made the least progress. We present
our results as a starting point for further research in
the area.

Theorem 7 χ(GT (n)) ≤ ⌈n
2
⌉.

Proof. It is well known that for n even, the set of
(

n

2

)

edges between the vertices of S can be partitioned
into n

2
edge-disjoint geometric non-crossing graphs

(see [11, 2] and Figure 4 for an example with n = 6).
Since GT (n) is a subgraph of GT (n + 1), we will as-
sume n to be even for the time being. Label these
graphs G1, . . . , Gn

2
. If an edge e belongs to Gi, assign

it the weight w(e) = i. To every triangulation T of
S, assign the number (

∑

e∈T w(e)) mod n
2
. Let T1

and T2 be two adjacent triangulations of GT (n), i.e.
T2 = T1−e+f for some crossing edges e and f . Since
e and f cross each other, w(e) 6= w(f), and thus the
numbers associated to T1 and T2 are different. This
induces a coloring of GT (n) with n

2
colors for n even

and ⌈n
2
⌉ in general. �

3



Figure 4: Partition of the edges into disjoint non-
crossing geometric Hamiltonian paths

The upper bound on χ(GT (n)) in Theorem 7 is non-
trivial since, for example, Brooks’ Theorem [3] gives
an upper bound of only n − 1. However, χ(GT (n))
is in fact sublinear, as we now show. Johansson [9]
proved that for sufficiently large ∆, every triangle-free
graph with maximum degree ∆ is O

(

∆
log ∆

)

-colorable;

see [13]. The next theorem follows since GT (n) is
(n − 3)-regular and triangle-free.

Theorem 8 χ(GT (n)) ∈ O
(

n
log n

)

.

We remark that the proof of Theorem 7 is construc-
tive, whereas Johansson’s proof is probabilistic.

6 Open Problems

The most challenging open problems arising from
this work are to determine the chromatic numbers of
GT (n) and M(K2n). Despite our efforts, we have not
been able to obtain non-trivial lower bounds for these
graphs. We have made the following educated guess
of the chromatic number of M(K2n).

Conjecture 1 χ(M(K2n)) = n + 1.

We have verified this conjecture with the aid of a
computer for n = 2, 3, 4.

We have studied M(K2n), but it would be very
interesting to study M(G) for other graphs.

There is another flip graph, M(G), related to
M(G). M(G) has as its vertex set the perfect match-
ings of G, where two matchings are now adjacent if
and only if their symmetric difference is a cycle of ar-
bitrary length. We have yet to study its chromatic
number.

With respect to χ(GT (n)), the problem seems far
more intriguing since not only do we not have a non-
trivial lower bound, we also believe that our upper
bound is far from being tight.

Conjecture 2 χ(GT (n)) = Θ(log(n)).

It would be interesting to see what techniques will
be capable of improving the lower bounds of both of
these graphs. It is likely that such techniques will turn
out to be useful in determining the chromatic number
of other graphs.
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