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Abstract. A geometric graph G is a graph whose vertex set is a set
Pn of n points on the plane in general position, and whose edges are
straight line segments (which may cross) joining pairs of vertices of G.
We say that G contains a convex r-gon if its vertex and edge sets contain,
respectively, the vertices and edges of a convex polygon with r vertices. In
this paper we study the following problem: Which is the largest number
of edges that a geometric graph with n vertices may have in such a way
that it does not contain a convex r-gon? We give sharp bounds for this
problem. We also give some bounds for the following problem: Given a
point set, how many edges can a geometric graph with vertex set Pn

have such that it does not contain a convex r-gon?
A result of independent interest is also proved here, namely: Let Pn

be a set of n points in general position. Then there are always three
concurrent lines such that each of the six wedges defined by the lines
contains exactly bn

6
c or dn

6
e elements of Pn.

1 Introduction

A geometric graph G is a graph whose vertex set is a set of Pn of n points
on the plane in general position such that its edges are straight line segments
joining some pairs of elements of Pn. Geometric graphs have received consid-
erable attention lately, see for example a recent survey by J. Pach [6]. Some
classical topics in Graph Theory have been studied for geometric graphs, e.g.
Ramsey-type problems on geometric graphs have been studied in [4][5]. A clas-
sical problem in Graph Theory solved by Turán [7] is that of determining the
largest number of edges that a graph has such that it does not contain a com-
plete graph on r vertices. In this paper we study the corresponding problem for
geometric graphs. We say that a geometric graph G contains a convex r-gon if
its vertex and edge sets contain, respectively, the vertices and edges of a convex
polygon with r vertices. We study the following problem: What is the largest
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number of edges a geometric graph may have in such a way that it does not
contain a convex r-gon? In Section 2 we give tight bounds for our problem.

In Section 3 we study the following related problem: Given a point set Pn

what is the largest number of edges that a geometric graph containing no convex
r-gons may have such that its vertex set is Pn? Sharp bounds are given for the
case r = 5 and r = 7. In this section we also prove the following problem which
is interesting on its own right: Let Pn be a set of n points in general position.
Then there are always three concurrent lines such that each of the six wedges
defined by the lines contains exactly bn

6 c or dn
6 e elements of Pn. This is the

discrete version of a theorem by R. C. and E.F. Buck [1] which states that any
convex set can be divided by three concurrent lines into six parts of equal area.

2 Geometric graphs without convex r-gons

Let Tr−1(n) be the Turán graph, that is the complete (r−1)-partite graph whose
classes have sizes as equal as possible, and denote by tr−1(n) the number of edges
in Tr−1(n) . We recall a result of Turán:

Theorem 1 [7] The maximal number of edges in simple graphs of order n not
containing a complete graph of order r is tr−1(n) and Tr−1(n) is the unique
graph of order n with tr−1(n) edges that does not contain a complete graph of r

points.

The next result follows immediately:

Theorem 2 The maximum number of edges that a geometric r-graph whose
vertices are in convex position is tr−1(n). The bound is tight.

The following result of Erdös and Szekeres will be useful:

Theorem 3 [2] Let k be a natural number. There exists a natural number p(k)
such that any set with at least p(k) points on the plane, in general position,
contains k points in convex position.

It is well known that p(4) = 5, p(5) = 9, and that

2k−2 + 1 ≤ p(k) ≤

(

2k − 5

k − 2

)

+ 2

In fact it is conjectured that p(k) = 2k−2 + 1.

Our objective in this section is to prove the following result:

Theorem 4 Let k be a natural number, k ≥ 3, and let r = p(k) − 1. Then
the maximal number of edges in a geometric graph on n points which does not
contain a convex k-gon is b r−1

2r
n2c. This bound is tight.
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Proof. Suppose that a geometric graph with n vertices contains more than tk(n)
edges. Then by Turán’s Theorem it contains a complete subgraph H with p(k)
vertices. By Theorem 3, the vertex set of H contains k elements in convex posi-
tion, and thus G contains a convex k-gon.

To show that our bound is tight, take a point set S in general position with
p(k) − 1 points labeled q1, . . . , qp(k)−1 on the plane such that S contains no k

points in convex position, and let m be an integer greater than or equal to 0.
If we substitute each of the points qi by a set Si with ri = m, or ri = m + 1
points within a sufficiently small neighborhood of qi, and join all pairs of points
u, v with u ∈ Si, v ∈ Sj , i 6= j, i = 1, . . . , p(k) − 1 we obtain a geometric graph
with n = r1 + . . . + rp(k)−1 vertices and tp(k)−1(n) edges which does not contain
a convex k-gon. Our result follows. ut

For the cases r = 4, and r = 5 it follows that any geometric graph containing
no convex quadrilateral (respectively convex pentagons) contains at most b 3

8n2c
(respectively b 7

16n2c) edges.
Using the previous theorem we can construct geometric graphs containing no

convex pentagons on n points as follows: Since p(5) = 9, take eight points such
that no five of them are in convex position. Then substitute each point by m or
m + 1 points, m ≥ 1, and finally join points that are in different subsets. The
graph obtained contains b 7

16n2c. See Figure 1. Similar constructions an be used
to obtain geometric graphs without convex quadrilaterals.

Fig. 1. Constructing a geometric graph with sixteen vertices, no convex pentagons,
and b 7

16
n

2c edges, n=16.

3 Geometric graphs with predetermined vertex sets

To conclude our paper, we study the following problem: Let Pn be a point set.
What is the largest number of edges that a geometric graph may have such that
the vertex set of G is Pn, and it contains no convex r-gon?

We start by proving:
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Theorem 5 Let Pn be a point set. Then there is a geometric graph with vertex
set Pn containing no convex pentagons with b 3

8n2c. Our bound is tight.

Proof. Assume w.l.o.g. that P − n contains 4m points. It is well known that
given any point set in general position with 4m points on the plane, there exist
two intersecting lines such that there are exactly m points in the interior of
each of the four wedges into which they divide the plane. Our geometric graph
now contains the edges obtained by joining all pairs of points with elements in
different wedges. See Figure 2. That the bound is tight follows from the fact that
if the elements of Pn are in convex position, by Theorem 2 the graph cannot have
more than b 3

8n2c edges. ut

Fig. 2.

We finish by proving a similar result for geometric graphs containing no
convex heptagons.

Theorem 6 Let Pn be a point set. Then there is a geometric graph containing
no convex heptagons with vertex set Pn with b 5n

12 c edges. This bound is tight.

To prove Theorem 6, we will use the following result which is interesting on
its own:

Theorem 7 Let Pn be a point set with n points in general position. Then there
exist three concurrent lines, i.e. that intersect at a common point, such that the
interior of each of the six wedges determined by them contains exactly b n

6 c or
dn

6 e elements of Pn.

Proof. We prove our result for n = 6m. Similar arguments can be applied for
the remaining cases. Choose a horizontal line L1 that leaves 3m points in the
interior of the semi-plane below it. Find a second line L2 with positive slope
such that the four wedges W1, . . . , W4 determined by them contain m, 2m, m

and 2m points respectively; see Figure 3(a). Let q be the point of intersection of
our lines. Draw two rays emanating from q; the first one r1, splitting W2 into two
wedges, each containing m points in their interiors. The second ray, r2, splits W4

in a similar way; see Figure 3(b).If r1 and r2 are collinear, we are done. Suppose
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Fig. 3.

w.l.o.g. that the angle Θ1 between r1 and r2 in the clockwise direction (the size
of the angle we have to rotate r1 to make it coincide with r2) is greater than π.

Rotate L1 continuously keeping 3m points on each of the semi-planes deter-
mined by L1. Simultaneously update the second line, and r1, and r2. After a
careful rotation of L1 180 degrees, we can make L1 and L2 coincide with them-
selves (but with different orientations), and r1 (resp. r2) fall on r2 (resp. r1).
Along the way, Θ changed from its original size to 2π − Θ, and thus at some
point it took the value π. At this point r1 and r2 became collinear. Our result
follows. ut

To prove Theorem 6, choose three lines as in the previous Theorem. As we did
in Theorem 5, join all pars of points with elements in different wedges. Clearly
the resulting geometric graph contains no convex heptagons. See Figure 4. To
prove that our bound is tight, choose Pn in convex position.

At this point we were unable to prove a result similar Theorem 6 for convex
quadrilaterals, hexagons. We ask the following question:

Problem 1 Is it true that given a point set Pn of n points in general posi-
tion, there is always a geometric graph containing no convex quadrilaterals (resp.
hexagons) whose vertex set is Pn with t3(n) (resp. t5(n)) edges?

A similar question for convex r-gons r ≥ 8 is open. However to solve this
problems new techniques will be required, as Theorem 7 does not generalize to
more than three lines. It is straightforward to find examples of point sets with
8m elements for which there are no four concurrent lines that split the point set
into equal size subsets.
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Fig. 4.
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