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Abstract. For a planar point set P in general position, we study the
ratio between the maximum area of an empty triangle with vertices in
P and the area of the convex hull of P .

1 Introduction

Let Pn be a point set with n elements in general position in the plane, n ≥ 3.
For Q ⊆ Pn denote the area of the convex hull of Q by A(Q). We evaluate the
ratio between the maximum area of an empty triangle T with vertices in Pn and
the whole area A(Pn). Namely, let

f(Pn) = max
T⊂Pn

A(T )

A(Pn)

and define f(n) as the minimum value of f(Pn) over all point sets Pn in general
position. The next result proved in [5] will be used in the proof of Theorem 1.

Theorem A. Let B be a compact convex body in the plane and Bk be a largest
area k-gon inscribed in B. Then area(Bk) ≥ area(B) k

2π sin 2π
k , where equality

holds if and only if B is an ellipse.

For point sets Pn in convex position (that is when the elements of Pn are the
vertices of a convex polygon) the value f conv(n) is defined in a similar way. The
following lemmas are proved in [1].

Lemma A. For point sets in convex position with five elements

f conv(5) =
1√
5
.
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Lemma B. For point sets in convex position with six elements

f conv(6) =
4

9
.

2 Points in convex position

We first study the value f conv(n). In what follows, a triangle with vertices x, y, z
will be denoted by 4xyz.

Lemma 1. Let r(n) be the value of f(Pn), where Pn denotes the set of vertices

of a regular n-gon. Then

r(n) =
3
√

3

2n sin 2π
n

when n ≡ 0 mod 3;

r(n) =
2

n
· sin bn/3c2π

n

sin 2π
n

(

1 − cos
bn/3c2π

n

)

when n ≡ 1 mod 3;

r(n) =
2

n
· sin dn/3e2π

n

sin 2π
n

(

1 − cos
dn/3e2π

n

)

when n ≡ 2 mod 3.

Proof. Suppose that the maximum area triangle ABC with vertices in Pn divides
the boundary of the convex hull of Pn into three chains AB, BC and CA, with
p, q and r edges, respectively (Fig. 1, left). We show first that any two of these
numbers differ at most by 1. Suppose that this is not the case, and that for r
and q we have r − q ≥ 2. Consider the 4ABD where D is the point symmetric
to C with respect to the bisector of AB (Fig. 1, right). Assume w.l.o.g. that the
line AB is horizontal. Observe that 4ABC and 4ABD have the same area,
therefore the line DC is parallel to the line AB. Observe that since r − q ≥ 2,
there is some vertex E of Pn in the arc CD, strictly above CD. Then the area
of 4ABE is greater than the area of ABC, contradicting the choice of 4ABC.
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Fig.1.



Therefore, we conclude that the maximal area triangle splits the boundary
into three chains whose numbers of edges are {t, t, t}, {t, t, t+1}, {t, t+1, t+1},
when n ≡ 0, 1, 2 mod 3, respectively. An easy computation now leads to the
claimed formulas. ut

Notice that each r(n) is a decreasing function. Thus we can deduce that

lim
n→∞

r(n) =
3
√

3

4π
.

By using Theorem A and Lemma B, we obtain:

Theorem 1. For convex point sets in the plane of size n > 6 we have

3
√

3

4π
≤ f conv(9) ≤ 4

9
and

3
√

3

4π
≤ f conv(n) ≤ r(n) ∀n > 6, n 6= 9.

3 Points in general position

In this section, we estimate the value f(n) for point sets in general position. A
k-hole of a point set Pn is a subset S ⊂ Pn with k elements such that the interior
of the convex hull of S does not contain any element of Pn. To prove our results,
we recall the well-known theorem of Harborth [2].

Theorem B. Any planar point set with 10 or more elements has a 5-hole.

We first prove the following lemma which will be useful to determine the
lower bound of f(n). A k-hole is said to be non-overlapping with another l-hole
if these convex hulls have disjoint interiors.

Lemma 2. Any planar point set P25 with 25 elements has non-overlapping three

5-holes, or one 5-hole and one 6-hole.

Proof. Let a, b, c be three points on the plane. Let C(a; b, c) denote the convex
cone with apex a determined by a, b, c. We label the elements of P25 from p1

to p25 as follows: Let p1 be the element of P25 with the smallest x-coordinate.
Label the remaining points p2, . . . , p25 such that the slope of the line segment
joining pi to p1 is smaller than that of the line joining pj iff i < j; 1 < i, j.

If C(p1; p2, p17) contains two non-overlapping 5-holes, we are done since
C(p1; p17, p25) has one 5-hole by Theorem B. Assume otherwise. By Theorem
B each of C(p1; p2, p10) and C(p1; p9, p17) contains a 5-hole, call them H1 and
H2 respectively. It follows that p10 is a vertex of H1 and p9 is a vertex of H2. Two
cases arise. H1 contains p1 or it does not. In the first case let {p1, a, b, c, p10} be
the vertices of H1 (labeled in the anti-clokcwise order), and consider the domain
D = C(p1; p10, p17) ∩ C(c; p1, p10). If D ∩ P25 were empty H1 would not overlap
H2. Then we can find a point u in D such that 4p1p10u is empty. Therefore
there exist a 6-hole in C(p1; p2, p17).

Suppose then that H1 does not contain p1 and label the vertices of H1

{p10, a, b, c, d} in the anti-clockwise order. Let L be the line trough p1 and p10.



Rotate L in the anti-clockwise direction around p10 until it meets a point q in
{p2, . . . , p25}. If q is a or an interior point of C(p10; p1, a), the closed half-plane
determined by the line through q and p10 containing p1 has precisely 18 points
and we can find two convex cones whose apex is q, each containing 7 interior
points. Each contains a 5-hole. Thus P25 contains three non-overlapping 5-holes.
Suppose then that L meets a point q ∈ {p11, . . . , p25}. Note that C(p10; p1, q)
contains precisely 14 interior points. Consider the point q′ such that C(p10; q, q

′)
contains 7 interior points. Then if q′ is contained in C(a; p1, p10), we are done
since both C(p10; q, q

′) and C(p10; q
′, a) contain at least 7 interior points each.

Otherwise, let w be the point in C(p10; q, q
′) such that C(p10; w, q′) is empty.

Then both C(p10; d, w) and C(p10; w, p1) also contain at least 7 interior points.
ut

Now we can prove:

Theorem 2. Let n ≥ 25 be an integer. Then:

23

(37 + 3
√

5)n − (97 + 6
√

5)
≤ f(n) ≤ 1

n − 1
.

Proof. For point sets in convex position our lower bound holds trivially. Assume
that Pn is not in convex position and A(Pn) = 1. Assume w.l.o.g. that p1 is in the
interior of the convex hull of Pn and that p1 is the origin. Relabel the elements
of Pn−{p1} by p2, . . . , pn such that for 1 < i < j the angle formed by the vector
pi with the x axis is smaller than that formed by pj with the x axis. Consider
the subsets Sk = {p1, p2+23k, p3+23k, . . . , p25+23k} of P , k = 0, . . . , bn−2

23 c − 1.
By Lemma 2, each Sk has three non-overlapping 5-holes, or one 5-hole and one
6-hole.

Let

l(n) =
23

(37 + 3
√

5)n − (97 + 6
√

5)

and assume first that each Sk has three 5-holes. If any of these 5-holes has area
greater than or equal to l(n)

√
5, by using Lemma A, we are done.

Triangulate each of these 3bn−2
23 c 5-holes, and take a triangulation T of Pn

that uses these triangles. Observe that T has at most M(n) = (2n−5)−9b n−2
23 c

triangles not contained in any of the 3bn−2
23 c 5-holes of Pn.

Since each 5-hole of Pn has area smaller than l(n)
√

5 the total area of such
5-holes is at most 3bn−2

23 cl(n)
√

5 = L(n). Then at least one of the M(n) triangles
of T not contained in the 5-holes of Pn has area greater than or equal to

1 − L(n)

M(n)
≤ l(n).

We claim that the value obtained when some subsets Sk of Pn have both a
5-hole and a 6-hole is larger than this lower bound. For instance, we can show
by using Lemma B that the bound l(n) obtained for the case in which each Sk

has a 5-hole and a 6-hole is 92
(165+4

√
5)n−(422+8

√
5)

.



To prove the upper bound we construct the following configuration of n points.
Take an equilateral triangle with vertices {u, v, w} of area 1 and take a point
x in this triangle such that the triangles with vertices {u, v, x} and {w, x, v}
have area 1

n−1 . We place now n− 4 points p5, . . . , pn on the line segment xw so
that they divide the line segment xw in n− 3 intervals of the same length. Note
that each triangle with vertices {u, pi, pi+1} has area 1

n−1 , i = 4, . . . , n where
p4 = x and pn+1 = w. Next, move slightly p5, . . . , pn so that {v, p4, . . . , pn+1}
are in convex position as shown in Fig.2. Then there is no empty triangle of area
greater than 1

n−1 in this configuration.

u

v w

x

Fig.2. The configuration to realize the upper bound.
ut

Notes.

1. If we define fd(n) in a similar way for d-dimensional Euclidean space, we can
prove that

1

dn − d2 − d + 1
≤ fd(n) ≤ 1

(d − 1)n − d2 + 3
.

2. The problem studied in this paper is somehow related to the famous Heil-
bronn triangle problem: to place n points in a square of unit area so as to
maximize the area of the smallest triangle determined by the n points. It has
been proved that there is always a triangle of area O(1/(n8/7−ε) and that
there are point sets in which every triangle has area Ω(log n/n2) ([3],[4]). It
has been conjectured that the later value should be the correct one. Would
the number of “small” triangles proven to be very large, one might expect
to find as a consequence some “large” empty triangle, yet we have not seen
so far whether this approach is feasible.
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