A problem on hinged dissections with colours

J. Akiyama * F. Hurtado?  C. Merino?  J. Urrutia?

Abstract

We examine the following problem. Given a square C' we want
a hinged dissection of C' into congruent squares and a colouring of
the edges of these smaller squares with k£ colours such that we can
transform the original square into another with its perimeter coloured
with colour 7, for all 4 in {1,--- ,k}. We have the restriction that the
moves have to be realizable in the plane, so when swinging the pieces
no overlapping are allowed. We show that for k& colours, we need p?
pieces, with p an even number and at least 2k + 2vk2 — k, this by
using a necklace made of the p? pieces and a ingenious way to wrap it
into a square.

1 Introduction

A geometric dissection is a cutting of a geometric figure into pieces that we
can rearrange to form another figure. The hinged dissection problem ask if
given two geometric figures A and B of the same area, A can be dissected
and fixed with hinges at some joints so that: first A is still in one piece and
second A can be folded into B by swinging the pieces around the hinges.
There is a well known and beautiful solution when A is a equilateral triangle
and B is a square due to Henry E. Dudeney, see [10, 11]. This problem has a
long history and we referred the reader to [1, 2, 11, 12] to see a sample of the
diversity of results in this topic. Here we consider a related problem. Given
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a square C' we want a hinged dissection of C, where the pieces are squares,
and a colouring of the edges of the pieces with k£ colours such that we can
unfold the original square and fold it back but with its perimeter coloured
with colour 7, for all 4 in {1,---,k}. We observe that the moves have to
be realizable in the plane, so when swinging the pieces no overlapping are
allowed. We call this the hinged dissection problem with & colours, denoted
HDP,.

Figure 1: A solution for the hinged dissection problem with 2 colours.

The case when k£ = 2 has an easy solution and is best seen in Figure 1,
where colour 1 is represented by a solid line and colour 2 by a dashed line.
For the general case we have two solutions. Section 2 and Section 3 contain a
description of two structures, one called necklace and the other chain, which
are the basic structures for our solutions. We also include some of their
combinatorial properties. In Subsection 4.1 we present a solution that has a
nice combinatorial flavour associated to it. The second solution is outline in
Subsection 4.2. Section 5 provided some lemmas dealing with the swinging
of pieces. Section 6 comments on a linear time algorithm to check if a given
hinged structure can be folded into a line. Finally, the last section contain
some combinatorial geometry problems.



The square lattice L, is a well known graph [4, 15] but for reference we
include here a definition. The graph L, has as vertices the set {0,...,n —
1} x {0,...,n — 1} and where two vertices (i,7) and (¢, ;') are adjacent if
li — | +]j — j'| = 1. For the basic graph theory required in this paper the
reader is referred to [5, 19].

2 Necklaces and chains

Here we describe the basic idea behind our first solution. Given n congruent
squares Si,---S, we join S; to S;_1 and S;;; by two hinges fixed at two
diagonally opposite points of S;. If S; is also hinged to S,, we called this
structure a necklace of size n, NK,. Otherwise, we called the structure a
chain of size n, CH,. See Figure 2 for examples. We assume that each 5;
comes with a marked diagonal which shows where are the hinges in S;.

Figure 2: The necklace N'Kg and the chain CHs.

Our goal is to fold a necklace NK,, into a square C. The first obvious
requirement is n = p? for some p, and then, it follows that the perimeter of
C will be formed with 4(p — 1) pieces from N'K,2. Let k > 3 be an integer
and suppose that p is big enough so that we can have at least k£ segments of
4(p — 1) pieces in NKC,2. For that we require p to be at least 2k + 2v/k? — k.

We describe now a plausible solution to the hinged dissection problem
with & colours. We colour each of the £ segments with a different colour,
suppose that we can fold NIC,2 into C in such a way that a monochromatic
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segment is on the perimeter, the election of the monochromatic segment is

irrelevant due to the symmetry of N'K,2. Thus, we get a solution for HD P,
Therefore, we only require a way to fold a necklace N'/C,2 into a square

with the desired condition that a segment in N'/Cp2 is on the perimeter.

3 Folded necklaces

In this section we study ways to fold a necklace. A basic move is either a
swing of two squares around a hinge or a translation of a square in the plane.
A mowve is a group of basic moves perform simultaneously. See Section 5 for
examples. A way to fold a necklace N/ICp2 into a square C' is a sequence o
of moves. The result is a distribution of the p? pieces of N2 on C and in
each piece there are marks for the places of its two hinges. Thus, from the
labels on the pieces and the marks of the hinges, we know which adjacent
pieces are joint together. We call this distribution of the S; with their marks
a folded N'IC,2, or just folded necklace, and it is denoted by F(NK,2).

For us 2 folded necklaces are the same if they just differed by a relabelling
of the squares S; induced by a cyclic permutation of (1,...,p%), then, 2
different sequences «; and oy of moves may lead to the same folded N'IC,2.

Each folded necklace F' = F,(NK,2) has two associated graphs. First,
we call the places where there are corners of squares in the partition of F'
crossing points. Observe that there are (p+1)? crossing points in F. Now, we
have the graph with vertex set the crossing points of F' and there is an edge
between two vertices if they are consecutive crossing points either vertical
or horizontally in the dissection. This graph is clearly the square lattice
L,y1. With this planar representation, there is a natural bijection between
the internal faces of L, and the squares S; of N K.

The second graph is described by the set of segments joining two hinges.
That is, there is a vertex for each crossing point in the folding necklace where
there are one or two hinges, and there is an edge between crossing points a
and b if there are hinges h; in a and hs in b such that h; and hy are in the
same square S;, for some . Called this graph H,.

We have some basic facts about H,. By definition of the graphs, V (H,) C
V(Lpt1)- The degree of any vertex in H, is either 2 or 4, so H, is Eulerian.
This also follows as H,, comes from a folded necklace which clearly induces
a Eulerian decomposition of H,. Any two adjacent vertices v and u in H,
are at distance two in L, 1, as the edge {u,v} is a diagonal in some internal
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face of L,1,. Finally, the four corners of a folding necklace F/(NK,2) cannot
be places for hinges.

Proposition 3.1. The graph H, has as vertex set,
V(H,) = {(3,5)|0 <4,j <p, i+ odd}

Corollary 3.2. A necessary condition for a necklace NK,2 to have an as-
sociated folding necklace is p to be an even number.

Thus, we can identify H, as the graph with vertices {(4,7)|0 < 4,5 <
p, i+7j isodd} and two vertices are adjacent if they are at distance 2 in
Ly1. See Figure 3.

Figure 3: The graphs Lg, in solid line. and Hg, in dotted line.

As we mentioned, H), is Eulerian, so it admits an Eulerian decomposition.
An Eulerian decomposition D of H, will correspond to a folded necklace if
two conditions are satisfied. First, D has exactly one closed trail. Second,
there is no crossing at any vertex. Given a vertex v of degree 4 in H, with its
edges in cyclic order ey, e5, e3 and ey, we say that D has a crossing at v if one
of the closed trails of D uses ez after e;. Then, the set of folded necklaces are
a subset of the Eulerian decompositions of H, with one closed trail and no
crossings. We call this set of non-crossing Eulerian decompositions with one
component the set of folded-necklace configurations. The following theorem
tell us how many folded-necklace configurations there are.

Theorem 3.3. The number of folded-necklace configurations equal the num-
ber of spanning trees of Lyo.



Proof. Let v a vertex of degree two in H,,, we can eliminate v by contracting
one of its incident edges. If we continue this process, we will arrive at the
graph H,, obtained from H, by eliminating all the vertices of degree 2 in the
described procedure. The graph I:Ip is a 2-connected 4-regular planar graph,
then it is known that ﬁp is the medial graph of some graph, see chapter 2 of
[18].

Consider the graph M with vertex set

V(M) ={(i,7)|0<i,j <p,iand j are odd},

and there is an edge between two vertices of V(M) if they are at distance 2
in Lpyq. It is not difficult to check that I:Ip is the medial graph of M. Also,
observe that M is isomorphic to L.

Now, any Eulerian partition of ﬁp corresponds to an Eulerian partition
of H, by splitting the vertices of degree 4 in the same way for both graphs.
More important for us, the corresponding Eulerian partitions of H, and I:Ip
have the same number of components and either both have crossings or both
have no-crossings.

We have the following general result [6, 14, 16, 17]. Given a graph I' and
[, its medial graph, we have

T(T50,2) = 3 (@ — 1)),
D
where T'(I'; z,y) is the Tutte polynomial of the graph I', the sum is over
all Eulerian partitions of I';, such that each D has no crossings and (D)
denotes the number of closed trails of D. It is also known that 7°(I';1,1)
counts the number of spanning trees of I [6], thus, we have that the number
of Eulerian partitions of I',, with one closed and no crossings equals the
number of spanning trees of I'. The theorem follows when we take I' to be
M. For the definition and properties of the Tutte polynomial, see [6]. O

The previous theorem guarantee a bijection between folded-necklace con-
figurations and spanning trees of the graph M. Explicit bijections have been
constructed even for the general case of I' and its medial graph I',, [13]. Here
we describe a bijection for our case but the proof is just outline.

Proposition 3.4. To each non-crossing Eulerian decomposition of H, with
one closed trail corresponds a spanning trees of Lyj,. Conversely, each span-
ning tree of Lye defines a non-crossing Eulerian decomposition with one
closed trail.



Proof. For a vertex v of degree 4 in our planar drawing of H,, its 4 incident
edges e1, es,e3 and e4, can be said to point out NE, NW, SW and SE respec-
tively. A Eulerian decomposition D is said to split v horizontally if it uses
e; and then ey and to split v vertically if it uses e; and then e4.

Given an non-crossing Eulerian decomposition D of H, with one compo-
nent, we construct the following spanning subgraph 7" of M. The vertices
(1,7) and (i + 2,7) of M with ¢ and j odd are adjacent in T if and only if
the vertex (i + 1,7) of H), is split horizontally in D, for 1 < i < p — 3 and
1 < j < p-—1. Similarly, the vertices (7,) and (7,5 + 2) of M are adjacent
in 7" if and only if the vertex (i, + 1) is split vertically, for 1 < i <p—1
and 1 < j < p—3. Observe that the edge set of T" is a subset of the edge set
of M.

Any edge of T is surrounded by edges of the Eulerian trail, so if 7" had a
cycle, this cycle would divide D in two components, contrary to our election
of D. Also, each vertex of T is surrounded by the Eulerian trail D, and
the edges of D do not cross any edge of M and thus of T. Therefore each
connected component of 7' is surrounded by a closed trail of D, but as there
is just one, T is connected. We conclude that 7" is a spanning tree of M.

For a given spanning tree T" of M we construct the following Eulerian
decomposition of Hy,. Let (4, j) be a 4-degree vertex of H,, then 0 < 4, j < p.
As i + 7 is odd, we consider two cases. First suppose that 7 is odd and j
is even. In this case, if (7,7 — 1) and (4, + 1) are adjacent in T, we split
(i, 7) vertically, otherwise, we split it horizontally. In the case that i is even
and j odd, if (¢ —1,7) and (i + 1, ) are adjacent, we split (4, j) horizontally,
otherwise we split it vertically.

Clearly, we obtain a non-crossing Eulerian decomposition D. But as
any vertex of 7' is surrounded by the Eulerian trail, if D has more than 1
component, then 7" is not connected, contrary to our assumption that it is a
spanning tree.

Finally observe that if we start with an Eulerian decomposition D, and
we obtain a spanning tree 7p using the first construction, then when we
apply the second construction to Tp we regain D. O

See Figure 4 for an example with Hg.

Corollary 3.5. The number of folding necklaces of N, is at most the
number of spanning trees of Ly;s.



It has been studied the asymptotic behavior of several numerical invari-
ants of the square lattice L,,. Of particular interest is the following result that
is mentioned in [15]. The asymptotic behavior of the number of spanning
trees of Ly, t(L,) is given by

lim #(n)'/" = e¢ & 3.209912556,

n—oo

where c is the value of a double integral.

4 Two solution

4.1 A first solution

With the discussion of the previous section, we can now described easily a
solution to the hinged dissection problem with & colours.

Given k colours we use a necklace of size p?, N2, with p even and at
least 2k + 2v/k? — k. We choose k different segments of squares in N'/Cp2 of
length 4(p — 1) and we colour them with different colours. The remaining
squares are colour arbitrarily. We fold the N,z into a square in such a
way that any of the chosen segments forms the perimeter of the square. The
following spanning tree of L, = L, describes, by using the bijection in
Proposition 3.4, a folded-necklace configuration F' that has this property.
The tree T has edges joining the following pair of vertices:

(@ 5),(1+1,7) 1<i<s—2, 0<j<s—1

(0,5),(0,5 +1) 0<j<s—2
s—1,7),(s=1,j+1) 0<j<s-2;
(0,s—1),(1,s=1)

An example of such a tree for p = 6 is in Figure 4. The tree is in thick
lines and the vertices are surrounded by circles.

A trivial observation is that if we can fold the necklace into a square, then
we can unfold the square back to the necklace, and therefore, this problems
are equivalent. So, it is just left to prove that F' is actually a folded necklace.

To do this, we use the move called opening a corner of page 11 in Section 5.
The move allow us to“open” the left bottom corner of F'. For an example
see Figure 4, on the left it appears a folded-necklace configuration with its
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Figure 4: An example of an Eulerian partition and how to open a corner.

associated tree for N'Ksg, and on the right, the folded-necklace configuration
with the left bottom corner opened. Now, it is clear that the outer layer of
squares can be unfolded. We can continue unfolding the left and upper part
of the second outer layer and continue in zigzag with the rest of the layers.
This process is depicted in Figure 5, on the left it appears the folded-necklace
configuration of Figure 4 with the outer layer already unfolded, and on the
right, the beginning of the zigzag process that will finish unfolding N K3s.

Figure 5: The process of unfolding in its last stages.



4.2 A second solution

The second solution for the hinge dissection problem with £ colours uses
the structure of chains of Section 2. It is very related to the solution of
the previous subsection and the proof of its validity depends on the validity
of the other solution, but we present it as we thought about it first and it
reduces the number of pieces in the dissection by one half.

Take a chain CH,> and consider it as it were a necklace N'K,2. By the
Subsection 4.1, if p is even and at least 2k + 2v/k? — k, we can used CH,.
for a solution of the problem. But to reduce the number of pieces, we can
choose [k/2] different segments of squares in CH,> of length 4(p — 1). We
now choose a pair of colours for each segment and we colour the outside part
with one colour and the inside with the other colour. The remaining squares
are coloured arbitrarily. As the inside of CH,2, when consider as a necklace,
can be change to be the outside, we reduce the number of segments required
by a factor of 1/2. So, this second solution requires a chain C?#,2, where p
is even and at least k + v k2 — k. Its validity follows form the validity in the
case of necklaces.

5 Some allowable moves

In this section we show two moves, as explained in Section 3, that help us
in the unfolding, if there is one, of a folded-necklace configuration. Here we
use following trivial geometric fact. When a square is turn around a hinge in
the bottom left corner A, the other three corners a, b and ¢, as in Figure 6,
describe concentric circles. So, if there is no obstacles in the trajectory of a
and b, there is no obstacle in the trajectory of ¢. In particular, a wall from
h to ¢ and from ¢ to b is not an obstacle for the trajectory of c.

bl%

7
)

Figure 6: An square turning
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We now described the move that is used in Subsection 4.1. Consider five
squares C', ..., Cs in the right hand corner of a folded-necklace configuration,
where (5 is on top of C5, C3 is on top of C and C5 is between C; and Cj.
Suppose further that C; is joint to C;11 by a hinge, for 1 <17 < 4. Now, the
following move is possible: turn C; and C; around their top left hinge by €
degrees at the same speed and simultaneously, also, at the same time, move
Cy, C3 and C together, as one piece. This move is represented in Figure 7
and we call it opening a corner.

G G
- - y O Cl )/'/ \,\
/ T~ 4 N
cos(e)| |€ X b d|Cy 7
C /
0 /,/ AR _ //
>, C =

Figure 7: Opening a corner.

Lemma 5.1. The mowve described above is possible and the squares C1, ..., Cs
do not overlap.

Proof. As we turn C; and C5 at the same speed, the distance between their
bottom right corners does not change, thus the L figure describe by Cy, Cs
and C; can be fit in the right position by an appropriate translation. If in
Figure 7 we take the corner O to be the origin in the Cartesian plane, the
corners a, b, ¢c and d have the following coordinates:

= (sine, 1 — cose),

= (sin€e + cose€,sine + 1 — cose),

11



Thus, for any 0 < ¢ < 7, there is not overlapping. O

The previous move is the only one that we need for Section 3. However, we
consider interesting to give another move whose validity is not so intuitively
obvious, in fact, a physical model, made of wooden squares and string, help
us in the design of the move and in the proof of Lemma 5.2. Consider five
squares C', ..., Cs in the right hand corner of a folded-necklace configuration,
where C',Cy and Cj are align horizontally next to each other and Cj3,Cy and
Cs are align vertically, each on top of the next. Suppose further that C; is
joint to C;11 by a hinge, for 1 <17 < 4.

7N
C 7 \GCs
AN

C %
T T TN~ 1 s/ N\
s \\ Cl C2 // \\\ C3 T~ \b
N P N cos(e)| |e a T ¢ 7
N 4 N
N // ~r Yo C4 ,/
/
.’ o /
Cy .’ <~ ;
, sin(€) d
// \
N \
A \
. Cs \
Cs . \
N 0 \
7 ~ C
'/ /,

Figure 8: Another allowed move.

Lemma 5.2. The move described in Figure 8 is possible and the squares
Ci,...,C5 do not overlap.

Proof. Suppose we turn C; around its top left hinge by € degrees. As before,
we take the cornet O in Figure 7 to be the origin in the Cartesian plane, then
the corners a, b, ¢ and have the following coordinates:

a = (sin€ + cose,sine + 1 — cose),
b=a+(2,0),
c=(3,-2).
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Thus, the distance from b to c is given by 2/3 +sine — 2cose. For 0 < e <
arctan 3/4, this distance is strictly less than 21/2, so there exists a point d
that satisfies that its distance to ¢ equals its distance to b and both equals
V2. Therefore, there exist angles # and 7 such that if we turn Cs around its
bottom left hinge by 6 degrees and turn C, around its bottom right hinge by
T degrees, the squares C'3, Cy and C5 will stay joint by the respective hinges.

The observation made at the beginning of this section ensures that there
is no overlapping. O

Observe that these two moves can “open” the corners of any folded-
necklace configuration. The moves are local and other local moves can be
designed to help in the process of unfolding a folded-necklace configuration.
There are also global moves, for example the one that splits in 4 pieces a
folding necklace, as depicted in Figure 9. In the picture, the polygons in
thick line represent big regions of the folding necklace and the 4 dashed lines
represent small sections of the Eulerian trail and the dots are 4 hinges in the
necklace.

Figure 9: A global move that splits the folding necklace in 4 pieces.

6 Snakes

We have proved that a chain or a necklace can be folded into a square. Also,
it is obvious that a chain can be folded into a line while necklaces do not
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have such a folding. So, a natural question is when a hinged structure of
squares can be folded into a line. We called such a structure a snake. Two
obvious requirements for a hinged structure 7" to be a snake are: first, 7" has
to be connected (to be in one piece), and second, 7' cannot have cycles.

It is natural to called tree-structure a hinged structure of squares that
is connected and with no cycles. Notice that checking if a given hinged
structure with N squares is a tree-structure can be done in O(N) steps.

A necessary condition for a tree-structure 7T to be a snake is that all of
its squares have at most two hinges. However, not all of these tree-structures
have the required folding as Figure 10 shows. Notice that this is a minimal
size example as any tree-structure with 3 squares can be folded into a line.

Figure 10: A tree-structure that cannot be folded into a line.

We present an algorithm to identify tree-structures with N squares that
are snakes. The algorithm runs in time O(N).

Let T be a tree-structure. First we check that each square in 7T has at
most two hinges, if this is not the case, 7" is not a snake. Then, we find one
square S with just one hinge (the existence of S is guaranteed by the fact
that T is a tree-structure). These two procedures can be done in the same
search and the time required is O(N).

Given a square S and one of its corners, the other three corners are
naturally named: left, right and front. Thus, for a square S and two hinges
a and b in S, we can define a function (S, a,b) which produces values in
{L,R,F} such that ¢(S, A,b) = L (R, F, respectively) if the corner with hinge
b is named left (right, front) according to the corner with hinge a.

Now, we do the following search on 7' that will produce a word over
{L,R,F}. First, we write F in the output. Let S be the square we found in
the previous step and a its only hinge. Then, find S’ the only square joint
to S and b the hinge in S’ different from a. Write ¢(S, a,b) in the output
and delete S and a. Continue the process with S < S’ and a < b. If S’ has
just one hinge (we arrive at the other end of T'), write F in the output and
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terminate the procedure.

We can finish our algorithm by noticing that 7T is a snake if and only if
the word produced by the previous procedure is in the language recognised
by the non-deterministic finite automata described in Figure 11. In the
automata, the state 1 represents a hinge placed above the horizon and the
state | represents a hinge placed below the horizon, when trying to fold a
tree-structure into an horizontal line from left to right. The symbol L (R, F
respectively) represents a new square to be placed and which has a second
hinge name left (right, front) according to the hinge already placed. We do
not provided a proof of our statement , but the reader is invited to convince
himself (herself).

Finally, the search and the simulation of the automata will take O(XV)
steps, so the whole algorithm runs in time O(N).

Figure 11: An automata that decides if a tree-structure is a snake.

7 Conclusion and open problems

We solve the hinge dissection problem with & colours. One solution uses a
necklace N'/C2, with p an even number and at least 2k+2v/k? — k. The other
solution uses a chain CH,: with p an even number and at least k + k? — k.

The first natural question is when a folded-necklace configuration is a
folded necklace, that is, when a folded-necklace configuration can be un-
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folded. The three moves mentioned in Section 5 have proved to be enough
for all the folded-necklace configurations that we have tried. So, it is valid
to ask if the set of folded-necklace configurations equals the set of folded
necklaces of a given necklace.

A generalization of both problems is the following: consider as induced 2-
connected subgraph G of the square lattice L,,, let vy be a vertex in G. Then,
we can construct a graph Hg as the graph with vertex set the vertices of G
at even distance from vy and two vertices adjacent if they are ad distance
2 in G. When G is L,, Hg is precisely H,_;. This graph is Eulerian, so
there exists a non-crossing Eulerian decomposition with one closed trail. If
we called these decompositions, folded-necklace configurations, the question
is again when a given folded-necklace configuration is a folded necklace of
sizes f, where f is the number of internal faces of G.

Another natural question is when a tree-structure can be folded into a
square or in general to a rectangle.

It is worth mentioning the similar problems of straightening polygonal
arcs and convexifying polygonal cycles. In both cases, not squares but line
segments are considered and these pieces are, like in our case, joint by hinges.
More precisely the questions are as follow: when a chain of line segments can
be reconfigured to lie on a straight line and when a necklace of line segments
can be reconfigured to form a planar convex polygon. The restrictions are
as ours when consider the line segments as rigid bars. If a chain or necklace
cannot be reconfigured, it is called locked. In [7] it is shown that no chain
or necklace is locked. A different situation arises when the line segments are
joint to form general trees and not just paths or cycles. In this case there
exists trees that are locked, but for the precise result see [3, 8.

Also related to our work is [9] where, among other results, the authors
consider hinged dissections of polyominoes by congruent right isosceles tri-
angles. A polyomino is a finite collection of congruent squares such that the
interior of their union is connected, and the intersection of two copies is either
empty, a common vertex, or a common edge (notice that a square partitioned
into p? smaller squares is a polyomino). It is shown in [9] that a chain of
right isosceles triangles with 2n pieces can be folded into any polyomino with
n squares. Another result is that 5 congruent squares cannot be hinged in
such a way that they can be folded into all possible polyominoes of size 5.
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