Finding Shortest Maximal Increasing Subsequences
and

Domination in Permutation Graphs.

Mikhail J. Atallah (*)
Gleen K. Manacher (")
J. Urrutia (¥)

Abstract.

In this paper we present an algorithm with O(n logzn) complexity to find a shortest
maximal increasing subsequence of a sequence of numbers. As a byproduct of this algorithm a
O(n logzn) algorithm to find a minimum (weight) independent dominating set in permutation
graphs is obtained, this compares favorable with the previous o(n%) algorithms known to solve

this problem .

(*) Computer Science Dept, Purdue University, West Lafayette, IN 47907.
(") Dept. of Mathematics, University of Illinois, Chcago, IL 60614.

(1) Dept. of Computer Science, University of Ottawa, Ottawa, Ontario, Canada.

1. Introduction
Given a sequence S ={a(1), a(2),...,a(n)} of numbers, a subsequence of § is a

sequence S' = {a(i)), a(i),..., a(i)} contained in S such thati; <i, <...< 1. If in
addition a (i;) < a (1,) <...< a (i), then we say that S' is an increasing subsequence of

S. An increasing subsequence S' of S is called maximal if it is not a proper increasing
subsequence of another increasing subsequence of S. A maximum increasing
subsequence is one of maximum length.

Let ITbe a permutation on the set I, ={1,2,....,n}. Let G(II) be the graph with
V(G)=, such that i is adjacent to j in G(I) if and only if i<j and IT-1(i) > IT-1(j). A
graph H on n vertices is called a permutation graph if H is isomorphic to G(I) for a

permutation IT on I,. For a graph G a subset S contained in V(G) is called a

dominating set if for every u € V(G) there exists v € S such that u is adjacent to v. S
is called independent if no two vertices in S are adjacent. In [4] the problem of
finding a minimum independent dominating set in permutation graphs (from now on
called MIDS) was studied. In the same paper an O(n3) algorithm to solve the MIDS
was presented.

In this paper we present a O(n log2n) to solve the shortest maximal increasing
subsequence of a sequence of numbers (from now on called SMIS). We show then
that the MIDS problem in permutation graphs is equivalent to that of finding SMIS
subsequence of a sequence of numbers. As a consequence an O(n logZn) algorithm to
solve the MIDS problem in permutation graphs is obtained which compares
favorably with the O(n3) algorithm presented in [4]. It is interesting to notice that the
problem of computing the longest increasing subsequence (for short LIS problem) of
a sequence of integers has been widely studied [2,3], while the problem of finding the
shortest maximal increasing subsequence has not. Moreover, the O(n log n)
algorithms to solve the LIS problem can not be modified to solve the SMIS problem.
So in spite of their apparent similarity, the two problems seem to be quite different.
We should point out that our O(n logZn) algorithm uses techniques and data structures
that were originally developed to solve vector dominance problems in Computational

Geometry. In the weighted versions of the MIDS and SMIS problems, a non-negative

weight is associated to every element of I, or S. The problems then become those of

finding the minimum weight independent dominating set (MWIDS) and minimum
weight maximum increasing subsequence (MWMIS) respectively. The algorithms
we obtain for the unweighted cases can be easily modified to solve the weighted ones,

so we shall no longer concern ourselves with the weighted cases.

2. Minimum Weight Independent Dominating Sets in Permutation Graphs

The main objective of this section is to prove the following result.

Theorem 1. The problem of finding the SMIS of a sequence of numbers is

equivalent to finding a MDIS in a permutation graph.

Before proving Theorem 1, we shall obtain some properties of permutation

graphs.

Lemma 1. Let! ={i, i5,...,1, } be asubsetof I ;i <i, <...<i thenI forms

an independent set in G(IT) if and only if IT-1(i,) < IT'(i,) <...< IT-1(i}).

Thus if IT-1(i) < IT-1(j), i and j are not adjacent in G(IT). The result now follows.

QED.

We can now prove:

Lemma 2. Let I={ij, iy,..., i, } be a subset of I;; i, <i, < ... <i, such that IT-1(i,)
< IT'!(i,) <...< IT'1(i}). Then I is an independent dominating set in G(IT) if and only if
{I1(1)), I1(1,)...., II(3,)} forms a maximal increasing subsequence of {II(1), II(2)....,

II(n)}.

Proof. Suppose that {II(i;), I1(i,),..., II(i;)} forms a maximal increasing

subsequence of {II(1), I[1(2),..., [I(n)}. Then I forms a dominating set in G(II),
otherwise there is a vertex j €1 | such that JU{j} is also an independent set. But by

Lemma 1, we can now add II(j) to {Il(i), I1(i,),..., I1(i;) } obtaining a new increasing
subsequence of {II(1), I1(2)...., II(n)} which properly contains {II(i;), I1(i,)....,
(i)}, contradicting the maximality of it.

QED.

Proof of Theorem 1. By lemma 2 any independent dominating set in G (IT)
generates a maximum increasing subsequence in {I1(1), I1(2),..., [I(n)} . Then finding
a minimum independent dominating set in G(II) is equivalent to finding the minimun
maximal increasing subsequence in {I1(1), I1(2),..., I1(n)}.

QED.

3. Finding Shortest Maximal Increasing Subsequences.

In this section, we shall present an algorithm to find the SMIS of a sequence of
numbers. We now introduce some terminology and review some known results
which will be needed later.

Let P be a set of points in the plane. We use X (p) and Y (p) to denote the x and
(respectively) y coordinates of a point p. Point p; is said to dominate p; iff X(p;) > X
(p)) and Y (py) > Y (p;)). We use DOM(p;) to denote the subset of points in P that are
dominated by point p;; ie., DOM(p;) contains the points of P that are below and to the

left of p;. A point of P is maximum if no other point of P dominates it. From now on

we use MAX(P) to denote the set of maxima of P.

Our algorithm makes use of the following elegant result of Overmars and Van
Leeuwen: There exists a data structure for dynamically maintaining the maxima of a
set of points in the plane, such that insertions and deletions take time Q(n log?n) per
operation. Such an augmented tree structure (as it is called in [5]) takes O(n) storage
space and can initially be created in time O(n log n). At any time, the maxima are
available at the root, in a concatenable queue "attached" to the root. An augmented
tree structure can also support SPLIT and CONCATENATE operations in time
O(log?n) per operation (even though this is not mentioned explicitly in [5], it easily

follows from it). In other words, if the points are stored in the augmented tree

structure according to (say) their y -coordinate, then a SPLIT operation about any
horizontal line y =y, can be implemented in time O(log?n). Such a SPLIT operation
results in two augmented tree structures; one for the points above the vertical line,
and one for those below it.

A CONCATENATE operation also takes O(log2n) time and has the reverse
effect of a SPLIT . In the context of this paper, every point will have a label
associated with it, and we will need to maintain the smallest- labelled maximum at
the root of the augmented tree structure (more precisely, at the root of the
concatenable queue attached to the root). It is not hard to show that this can be done
without losing the O(log?n) time- per-operation performance (this is done using
standard data structure techniques, such as those described in reference [1]).

We now have all the ingredients which we use in our algorithm.

3.1. The algorithm

Let a(1),..., a(n) be the input sequence. Let 0; be a shortest maximal

increasing subsequence of a(1),..., a(i) which ends with a (i) . Let label(1) be the
length of o (1) and let predecessor(i) be the index of the predecessor of a(i) in o (i),
1.e. o (i) ends with a (predecessor(i)), a(i).

Algorithm MINMAX

Input: Sequence a(l), ..., a(n)

Output: A minimum-length maximal increasing subsequence of a(l), ... , a(n)

Method: The algorithm sets label(1):=1 and predecessor(1):= . Next the

algorithm creates points py,..., p, in the plane, where p; = (i, a(1)), 1=<1i<n. Then the

algorithm sweeps a vertical line L from left to right, maintaining the maxima of the
set of points to the left of L in an augmented tree structure 7. When the left-to-right

sweeping line L encounters a point p; , the following steps 1-3 are taken:

1) The algorithm splits 7 about the horizontal line y =Y (p;), obtaining two
augmented tree structures Tup
MAX(DOM(p;)) in a concatenable queue attached to its root, and the smallest-

labeled point of MAX (DOM (p ;)) is attached to the root of this concatenable

and T,,,, . Note that T,,, . contains the set

queue.

2) If MAX(DOM(p;)) is empty then the algorithm sets label(i):=1 and

predecessor(i):= . Otherwise it sets predecessor(i) equal to the index j of the
smallest labeled point p; of MAX(DOM(py)), then it sets label(i):=label(j)+1.

3) Rebuild T by concatenating 7, and T, , then insert p; in 7.
After the line L sweeps past p, (the rightmost of the p;'s), the algorithm chooses
a smallest-labeled point in MAX({p;...., p,}); let p; be this point. The algorithm

then sets s:= ¢, and then, so long as predecessor(k)# O, it does $:=a,,¢qecessor

is followed by k:=predecessor(k). When predecessor(k)= & the algorithm

outputs O.
End of Algorithm MINMAX

That label(i) and predecessor(i) are computed correctly by the algorithm
follows from the definitions of these two functions. That the s produced by the
algorithm is the desired subsequence follows from the definitions of the label and

predecessor functions and the observation that any maximal increasing subsequence
must end with an a . such that g € MAX({p,,..., p,})-
That the algorithm runs in O(n logZn) time is an immediate consequence of the

fact that each of the operations INSERT, SPLIT, and CONCATENATE takes O(log?n)
time in an augmented tree structure, and that the smallest labeled maximum is readily
available at the root.

This completes the proof of the following:

Theorem 2. Given a sequence of integers ay,..., a, , it is possible to find a

shortest maximal increasing subsequence in time O(n log?n) and space O(n).

Using theorems 1 and 2, we have:

Theorem 3. Finding a minimum independent dominating set in permutation

graphs can be achieved in O(n log2n).

4. Conclusions.

In this paper we gave an O(n logZn) time algorithm to find a shortest maximal

increasing subsequence of a sequence of n numbers. Using this algorithm, we can

find a minimum independent dominating set of a permutation graph in O(n log?n)

time. These results can be easily extended to the weighted cases.

References.

[1]. A.V.Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
[2]. R.B.K. Dewar, S.M. Merriyt and M. Sharir, "Some Modified Algorithms for
Dijkstra's Longest Upsequence Problem", Acta Informatica, Vol. 18, No. 1,pp.1-15
(1982).
[3]. E.W. Dijkstra, "Some Beautiful Arguments Using Mathematical Induction",
Acta Informatica, Vol.13, No. 1, pp. 1-8 (1980).
[4]. M. Farber and J. Mark Keil, "Domination in Permutation Graphs", Journal of
Algorithms 6, pp. 309-321 (1985).
[5]. M.H. Overmars and J. Van Leeuwen, "Maintenance of Configurations in the

Plane", Journal of Computer and Information Sciences, 1981,pp. 166-204.

