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Abstract

We estimate the chromatic number of graphs whose vertex set is the set of edges of a complete
geometric graph on n points, and adjacency is defined in terms of geometric disjointness or geometric
intersection.

1 Introduction

For integers n > k > t > 0, the general Kneser graph K(n, k, t) is defined as the graph whose vertices
are all k-subsets of the set {1, 2, . . . , n} and two such sets X and Y joined by an edge if and only if
|X ∩ Y | < t (see e.g. [JT95]). Kneser [Kn55] conjectured the following result on the chromatic number:
χ(K(n, k, 1)) = n − 2k + 2 for all 2 ≤ k ≤ n/2. This was proved by Lovász [Lo78] using tools from
algebraic topology. A shorter proof was given shortly after by Bárány [Ba78], and a purely combinatorial
proof has been obtained recently by Matoušek [Ma03].

In this paper we discuss the following two geometric versions of the problem. Let S be a set of n points
in general position in the plane (i.e., no three points collinear), and consider two graphs D(S) and I(S)
whose vertex set consists of all subsets of k points in S. Two such sets X and Y are adjacent in D(S) if and
only if their convex hulls are disjoint, and are adjacent in I(S) if and only if their convex hulls intersect.

In the sequel, we restrict ourselves to the case k = 2, and refer to D(S) and I(S), respectively, as the
segment disjointness graph of S and the segment intersection graph of S. Let

d(n) = max{χ(D(S)) : S ⊂ R
2 is in general position, |S| = n},

and similarly
i(n) = max{χ(I(S)) : S ⊂ R

2 is in general position, |S| = n}.
If we restrict our attention to point sets in convex position, then the corresponding functions are denoted
by dc(n) and ic(n), respectively. In this case we denote the corresponding graphs D(n) and I(n), since
clearly they depend only on the number n of points and not on the particular position of the points. With
this notation dc(n) = χ(D(n)) and ic(n) = χ(I(n)). We clearly have dc(n) ≤ d(n) and ic(n) ≤ i(n).

Our first result provides bounds for the functions dc(n) and d(n). Throughout this note, logarithms are
to the base two.
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Theorem 1 For any n ≥ 3 we have

(i) 2�n+1
3 � − 1 ≤ dc(n) ≤ min

(
n − 2, n − �log n�

2

)
.

(ii) 5�n
7 � ≤ d(n) ≤ min

(
n − 2, n + 1

2 − �log log n�
2

)
.

Notice that D(n) is a spanning subgraph of K(n, 2, 1). The fact that the chromatic numbers dc(n) and
d(n) are smaller than the corresponding value n−2 = χ(K(n, 2, 1)) shows a different qualitative behavior
when geometry comes into play.

Our second result gives bounds for the functions ic(n) and i(n).

Theorem 2 For any n ≥ 3 we have

(i) ic(n) = n.

(ii) n ≤ i(n) ≤ Cn3/2, for some constant C > 0.

It is easy to check that for fixed k ≥ 3, d(n) = Θ(n) and i(n) = Θ(nk), and this is why we restrict
our attention to the case k = 2. Let 3 ≤ k ≤ n/2 be a fixed integer, and S be a set of n points in general
position in the plane. That d(n) = O(n) follows from the upper bound χ(K(n, k, 1)) ≤ n − 2k + 2; see
also the proof of Theorem 1 below. To see that d(n) = Ω(n), consider sweeping a vertical line across S to
get �n/k� subsets of k points each, whose convex hulls are pairwise disjoint, thus each requires a different
color. Consider next i(n). Coloring each subset of k points of S with a different color gives the trivial
upper bound i(n) = O(nk). If S is a set of n points in convex position, say in clockwise order, it can be
partitioned into k consecutive groups of at least �n/k� points each. The set of convex k-gons formed by
selecting one point in each group, consists of pairwise intersecting polygons and has size Ω(nk). Thus each
such subset of k points requires a distinct color.

There is a yet another graph which is worth exploring, suggested to us by János Pach. We say that two
segments cross if they have an interior point in common. For a set of points S, define the graph W (S)
whose vertices are all the segments determined by pairs of points in S, two of them being adjacent if they
do not cross.

Define w(n) as the maximum of χ(W (S)) among sets S of n points in general position, and define
wc(n) analogously for points in convex position. We clearly have wc(n) ≤ w(n). Observe that D(S) is a
spanning subgraph of W (S), so d(n) ≤ w(n).

Theorem 3 For any n ≥ 3 we have

(i) wc(n) = Θ(n log n).

(ii) c1n log n ≤ w(n) ≤ c2n
2 · log log n

log n , for some constants c1, c2 > 0.

2 Proof of Theorem 1

Lower bounds. A geometric graph G = (V, E) is a graph drawn in the plane so that the vertex set V
consists of points in the plane, no three of which are collinear, and the edge set E consists of straight line
segments between points of V (cf. [PA95]).

Theorem 4 (G. Károlyi, J. Pach and G. Tóth, [KPT97]) If the edges of a complete geometric graph on n
vertices are colored by two colors, there exist �n+1

3 � pairwise disjoint edges of the same color.
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To prove a lower bound of 2�n+1
3 � − 1 on dc(n) and d(n), consider a set S of n in general position in

the plane. Let C1, C2, . . . , Ck be a k-coloring of D(S). Consider the following bipartition of the segments
with endpoints in S:

A = C1 ∪ C2 . . . ∪ C� k
2
�, B = C� k

2
�+1 ∪ . . . ∪ Ck.

Since either A or B must contain �n+1
3 � disjoint edges (by Theorem 4), which must in turn belong to

different color classes, we get ⌈
k

2

⌉
≥

⌊
n + 1

3

⌋
,

from which the bound follows.

For points in general position, we show a better lower bound of 5�n
7 �. First note that for any positive

integers i and j, such that n ≥ i · j, we have d(n) ≥ i · d(j), since we can use place i copies of j points
such that the convex hulls of the j-sets are pairwise disjoint, and the resulting set is in general position. Set
i = �n

7 � and j = 7, and consider the configuration of seven points shown in Fig. 1, with four points as
vertices of a rectangle and three points inside the rectangle and close to the middle points of three rectangle
sides.

The case analysis below shows that the chromatic number of the segment disjointness graph of the
configuration in Fig. 1 is at least five, hence d(7) = 5. Assume for contradiction that four colors, say
green, blue, red and purple, are sufficient.

1 2

34

5

6

7

Figure 1: A configuration of seven points: proof of the lower bound on d(n).

Case 1 The triangle with vertices 5, 6 and 7 is monochromatic, say green: 56, 57 and 67 are green. Color
12 with blue and 34 with red.

Case 1.1 15 is blue. Then 27 must be colored purple, 45 red, and 37 purple. The segment 26 cannot
be colored with any color, which is a contradiction.

Case 1.2 15 is purple. Then 37 must be colored red, 45 purple, 27 blue, 26 blue, and 16 cannot be
colored, again a contradiction.

Case 2 The triangle with vertices 5, 6 and 7 is bichromatic, having the segments 65 and 67 of the same
color: say 65 and 67 are green, and 57 is red. Color 12 with blue and 34 with purple.

Case 2.1 45 is red. Then 27 must be colored blue, 37 purple, 15 red, 16 green, and 14 cannot be
colored, contradiction.

Case 2.2 45 is purple. Then 23 must be colored blue, 15 red, and 37 cannot be colored, contradiction.
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Case 3 The triangle with vertices 5, 6 and 7 is bichromatic, having the segments 56 and 57 of the same
color: say 56 and 57 are green, and 67 is red. Color 12 with blue and 34 with purple.

Case 3.1 45 is green.

Case 3.1.1 14 is blue. Then 27 must be colored red, 26 red, 37 purple, 46 green, 15 blue, 23
purple, 16 blue, and 47 cannot be colored, contradiction.

Case 3.1.2 14 is purple. Then 35 must be colored green, 37 red, 26 blue, 15 green, 46 purple,
36 red, 16 blue, and 27 cannot be colored, contradiction.

Case 3.2 45 is purple. Then 37 must be colored red, 23 blue, 15 green, 14 purple, 26 blue, and 16
cannot be colored, contradiction.

Case 4 The triangle with vertices 5, 6 and 7 is trichromatic, say red, blue and green. It is easy to see that
segments 12 and 34 are disjoint and need two new colors. We have obtained again a contradiction.

By symmetry with Case 3, the case when the triangle with vertices 5, 6 and 7 is bichromatic, having the
segments 75 and 76 of the same color, is omitted.

Observations. A weaker lower bound of n−1
2 on dc(n) and d(n), follows immediately from the fact that

any geometric graph with n vertices and at least n + 1 edges contains two disjoint edges [HP34] (see also
[PA95]).

It is likely that our lower bound on d(n) can be improved using another “small” point configuration,
having more points than the one in Fig. 1.

Upper bounds. Let S be a set of n points in general position in the plane and D(S) its corresponding
disjointness graph. Since D(S) is a subgraph of K(n, 2, 1), the upper bound of n − 2 on χ(K(n, 2, 1))
applies to both dc(n) and d(n) as well. To be precise, the coloring is as follows: arbitrarily label the points
with {1, 2, . . . , n}; for i = 1, 2, . . . , n − 2, color all segments (i, j), where i < j, using color i; use color
n − 2 to color (n − 1, n) as well.

We now prove the upper bound for points in convex position. Given a set S of points in convex position,
we define the boundary-distance between any two points p, q ∈ S as the minimum number of edges
between p and q on the boundary of the convex hull of S; that is, d(p, q) = 1 if p and q are adjacent, and
so on. Label the n points which define D(n) as {1, 2, . . . , n}. In order to produce the required coloring of
D(n) we proceed recursively. For r < n, let D(n, r) be the subgraph of D(n) induced by the segments
(i, j) such that d(i, j) > r. Notice that D(n, 0) = D(n) and that D(n, r) is empty if r ≥ n/2. The key
point is the following claim.

Claim 1 If D(n, r) can be colored with c colors, then D(2n, r − 1) can be colored with c + n colors.

Proof. Assume we have a c-coloring of D(n, r). Let T be a set of n new points such that S∪T is in convex
position and the points of S and T alternate along the convex hull. That is, we relabel S = {1, 3, . . . , 2n−1}
and T = {2, 4, . . . , 2n}. Then we can consider D(n, r) as a subgraph of D(2n, r − 1), the latter being
defined on S ∪ T = {1, 2, . . . , 2n}. Our task is to color the segments of D(2n, r − 1) not in D(n, r) with
only n additional colors.

For a (new) point x ∈ T , let x′ = x − (r − 1) if r is even, and x′ = x − r if r is odd, where additions
are here and in what follows modulo n. Notice that in both cases x′ ∈ S. Also, let x′′ = x − r and notice
that x′′ = x′ if r is odd (see Fig. 2 for an example). Define also the sets of segments

Ax = {(x, x′′)} ∪ {(x, y) | d(x, y) ≥ r + 1},
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x’+2r x’+2r

x’+r+1x’+r

x’’ x’

xx

x’=x’’

r=4 r=5

Figure 2: Points in S are white, points in T are black. Sets Ax are drawn with solid lines, sets Bx with
dashed lines.

where the boundary-distance d(x, y) is with respect to S ∪ T , and

Bx =
{ {(x′, x′ + r), (x′, x′ + r + 2), . . . , (x′, x′ + 2r)} for r even,

{(x′, x′ + r + 1), (x′, x′ + r + 3), . . . , (x′, x′ + 2r)} for r odd.

Finally, set Cx = Ax ∪ Bx. Notice that segments in Bx always join points in S. It is immediate to check
that any two segments of Cx intersect, so that Cx is an independent set in D(2n, r − 1) and can be colored
with a single color (refer again to Fig. 2).

Then the coloring of D(2n, r − 1) is as follows. Start with point 2 ∈ T and color C2 with a new color.
Then color C4 with a second new color, and continue in this way up to C2n, using a total of n new colors.
At some point, we shall be coloring a segment in some Cx already colored in a previous step; it does not
matter, the segment gets the last color received in the process. Since this is a correct coloring scheme, it
only remains to see that all the segments in D(2n, r − 1) have been colored. There are three cases.

1. Segments joining points in S at boundary-distance greater than 2r + 2 are already colored by the
initial coloring of D(n, r).

2. Segments joining points in T belong to one of the Ax and have been colored; the same applies to
segments (i, j) with i ∈ S, j ∈ T and d(i, j) ≥ r.

3. Finally, segments joining points in S at boundary-distance at most 2r belong to one of the Bx and
have been colored.

This concludes the proof of the claim. �

To prove the upper bound, suppose first that n is power of 2: n = 2k, where k ≥ 2. Let x be the
smallest positive integer for which x ≥ 2k−x/2 = 2k−x−1.

Claim 2 x ≤ k − 	log k
 + 1.

Proof. It is enough to show that for x = k − 	log k
 + 1, we have

x ≥ 2k−x−1 (1)
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(since LHS is increasing in x, and RHS is decreasing in x). Let k = 2p + r, where 1 ≤ r ≤ 2p, and p ≥ 1.
Then (1) is equivalent to

k − 	log k
 + 1 ≥ 2�log k�−2,

or
2p + r − p − 1 + 1 ≥ 2p+1−2.

This amounts to verifying that 2p−1 ≥ p − r, which follows from 2p−1 ≥ p − 1 ≥ p − r. �

Notice that by the choice of x, D(2k−x, x) is empty. Applying Claim 1 repeatedly, we arrive at a
coloring of D(2k, 0) = D(n) using a number of colors not more than

2k−1 + 2k−2 + · · · + 2k−x+1 + 2k−x = 2k − 2k−x.

By Claim 2,

2k−x ≥ 2k−k+�log k�−1 = 2�log k�−1 ≥ 2log k−1 =
k

2
.

Hence the total number of colors used is at most 2k − k/2. Thus for n = 2k,

dc(n) ≤ 2k − k

2
= n − log n

2
.

For general n, let k = �log n� and m = n− 2k. We can color D(2k) with at most 2k − k/2 colors and
use m additional colors for the segments with endpoints in the m additional points. The total number of
colors used is not more than

2k − k

2
+ m = n − k

2
= n − �log n�

2
.

Finally we treat the case where S is a set of n points in general position. By the well-known Erdős-
Szekeres theorem, S contains a subset S′ of points in convex position, where m = |S′| ≥ log n/2. By the
previous proof, we can color the induced subgraph D(S′) of D(S) with m − �log m�/2 colors. For every
point x in S\S′ we choose a new color cx and all edges incident with x are colored with cx. This gives a
legal coloring of D(S). The total number of colors used is(

m − �log m�
2

)
+ (n − m) = n − �log m�

2
≤ n +

1
2
− �log log n�

2
,

and the upper bound in (ii) follows.

3 Proof of Theorem 2

Two segments can intersect either at an interior point or at a common endpoint. Thus for points in convex
position, the clique number of I(S) satisfies ω(I(S)) ≥ n. Indeed, if p is an arbitrary point of S, denote
by a and b its two adjacent vertices in say, clockwise order; then the set of n − 1 segments adjacent to p,
together with the segment (a, b) forms a set of n pairwise intersecting segments. This proves that ic(n) ≥ n
and i(n) ≥ n.

Next we show the upper bounds. First we analyze the case of points in convex position and verify that
ic(n) ≤ n. We make use of the following well-known fact.

Lemma 1 The edge set of a complete geometric graph whose vertices form a regular n-gon can be parti-
tioned into n matchings, each consisting of parallel segments.
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Since the crossing pattern of the edge set of a complete geometric graph whose vertices are in convex
position is the same as the one of a regular polygon, the upper bound follows.

For points in general position, we prove that i(n) = O(n3/2), by using another result on geometric
graphs.

Theorem 5 (G. Tóth, [To00]) For any j < n/2, a geometric graphs on n vertices with no j + 1 pairwise
disjoint edges has at most 29j2n edges.

(Theorem 5 improved on previous bounds where the dependence on j was in the fourth [PT94], and respec-
tively in the third power [TV99].)

Start with the complete geometric graph G on a given set of n points, and repeatedly remove a large
(independent) set of pairwise disjoint edges, until the graph becomes empty. Color each such set using a
different color. This is a valid coloring and it only remains to show that the number of independent sets can
be bounded as claimed.

The process consists of at most 	log (n2)
 steps, numbered with i = 2, . . . , 	log (n2)
 + 1. In step i,
the current graph, still denoted by G, has m edges, where

n2

2i
< m ≤ n2

2i−1
. (2)

Set

j =
⌊√

n

2i+9

⌋
,

and apply Theorem 5, to find and remove j + 1 disjoint edges. This is done repeatedly until m fails to
satisfy (2), and the process continues with step i + 1.
The number of independent sets of edges removed in step i is at most

n2

2i

(√
n

2i+9

)−1

= n
√

n 29/22−i/2.

Hence the total number of colors used is not more than

n
√

n 29/2
∞∑
i=2

2−i/2 = O(n
√

n).

Observations. Let ek(n) be the smallest number such that any geometric graph with n vertices and
m > ek(n) edges contains k + 1 pairwise disjoint edges, where k < n/2 (cf. [TV99, To00]). The best
lower bounds on ek(n) are ek(n) ≥ kn [Ku79], and ek(n) ≥ 3

2(k − 1)n − 2k2 [TV99]. Assuming that
ek(n) = O(kn) holds, and using this bound instead of the bound ek(n) = O(k2n) we used in the proof of

Theorem 2, would give i(n) = O(
∑i=log n2

i=2 n) = O(n log n), which is still above our linear lower bound.
In fact, it is reasonable to expect that one can partition the set of edges of a complete geometric graph

into a small number of non-crossing matchings (composed of pairwise disjoint edges), if the process is
carried out carefully, and does not make use of the bound in Theorem 2, which holds for any geometric
graph with sufficiently many edges. However, this goal remained elusive to us.

A simpler recursive decomposition scheme which gives a somewhat weaker upper bound i(n) =
O(nlog 3) ≈ O(n1.59) is as follows. It is enough to prove such an upper bound on b(n), the number of
non-crossing matchings into which the edge set of a complete bipartite graph can be partitioned, with parts
containing �n/2� and 	n/2
 vertices respectively, and in which the two parts are separated by a line. We
proceed as follows. Let l be a vertical line which yields a balanced partition of S, and h another line which
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simultaneously cuts the two sets, on the left and right sides of l, into two halves of equal size (see Fig. 3).
Then b(n) satisfies the recurrence

b(n) ≤ 3b
(⌈n

2

⌉)
,

which yields the claimed bound.
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Figure 3: A recursive decomposition scheme for the edges a complete bipartite geometric graph.

4 Proof of Theorem 3

The upper bound wc(n) = O(n log n) follows from the following explicit coloring. Assign a different
color to each edge of length 1 (the length of a segment is the boundary-distance between its two endpoints,
as in Section 2). Next group the edges of length 2 in n/2 crossing pairs and assign a new color to each pair.
Proceed in this way until all edges of length n/2 get the same color (for simplicity we are ignoring integer
parts). The total number of colors used is n + (n/2) + (n/3) + · · · = Θ(n log n).

We now prove that wc(n) = Ω(n log n). Let us consider any valid coloring C of W (S), let c be the
number of colors in C. Let us take as colors the integer numbers 1, . . . , c. For each color i = 1, . . . , c, let
Si be the set of segments in C with color i, and let Li be the finite ordered sequence of their lengths. Notice
that every length in Li is at least |Li|, because a segment of length t can participate in families of at most t
pairwise crossing segments. Let F1 = {L1, . . . , Lc} be the set having as elements these sequences.

Observe that a similar construction for the explicit coloring scheme described in the first part of this
proof in order to establish the upper bound would give the set of sequences

F = {{1}, {1}, . . . , {1}, {2, 2}, {2, 2}, . . . {2, 2}, {3, 3, 3}, . . . }

(assuming that n is even, as otherwise we would have a {2} alone, and similar integer part considerations
would apply to the other numbers).

From F1 we define a second set F2 having as elements sequences of integer numbers as follows. Let
F ′

1 be the subset of elements of F1 which are sequences that contain the integer number 2; some of them,
say a total of v1, will contain one 2 and possibly some other integer different from 2, and some of them, v2,
will contain exactly two 2’s (therefore |F ′

1| = v1 + v2). Let s be the number of integers different from 2
involved in sequences belonging to F ′

1, and notice that s ≤ v1. We replace these v1 + v2 sequences in F1

by forming 	(v1 + 2v2)/2
 pairs with the 2’s (leaving possibly one 2 alone) and forming 	s/2
 pairs with
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the elements different from 2 (leaving possibly one of them alone); i. e., we replace {2}, {2} by {2, 2} and
{2, a}, {2, b} by {2, 2}, {a, b}. As we have⌈

v1 + 2v2

2

⌉
+

⌈s

2

⌉
≤

⌈
v1 + 2v2

2

⌉
+

⌈v1

2

⌉
≤ v1 + v2 + 1,

we see that |F2| ≤ |F1| + 1.
Notice that we do not claim that the new set F2 corresponds to any coloring of W (S), it is just a set of

sequences of numbers in the abstract sense. Nevertheless the crucial property that each number t does not
belong to a sequence of length greater than t is maintained.

From F2 we define again a new set F3: Let F ′
2 be the subset of elements of F2 which are sequences

that contain the integer number 3; some of them, say a total of w1, will contain one 3 and possibly some
other integers different from 3, some of them, w2, will contain two 3’s and possibly some other integer, and
some of them, w3, will contain exactly three 3’s. Let s be the number of integers different from 3 involved
in sequences belonging to F ′

2; by the definition we have s ≤ 2w1 + w2. We replace these w1 + w2 + w3

sequences in F2 by forming 	(w1 + 2w2 + 3w3)/3
 triplets with the 3’s (leaving possibly one group with
one or two of them) and forming 	s/3
 triplets with the elements different from 3 (again leaving possibly
one group with one or two elements). As we have⌈

w1 + 2w2 + 3w3

3

⌉
+

⌈s

3

⌉
≤

⌈
w1 + 2w2 + 3w3

3

⌉
+

⌈
2w1 + w2

3

⌉
≤ w1 + w2 + w3 + 1,

we see that |F3| ≤ |F2| + 1 ≤ |F1| + 2.
Iterating this process for the lengths 4, . . . , �n/2�we would end up with the set of sequences F . There-

fore c + �n/2� ∈ Ω(n log n), for any valid coloring C of W (S), where |C| = c and hence wc(n) ∈
Ω(n log n) as claimed.

A subquadratic upper bound on w(n) is implied by a result analogous to Theorem 5 (below), and the
proof is similar to that of the upper bound on i(n) in Theorem 2.

Theorem 6 [PA95] For any j < n/2, a geometric graphs on n vertices with no j + 1 pairwise crossing
edges has at most 3n(10 log n)2j−2 edges.

Start with the complete geometric graph G on a given set of n points, and repeatedly remove a large
(independent) set of pairwise crossing edges, until the graph has roughly n7/4 edges (this threshold is quite
arbitrary). Color each such set using a different color. Then color the remaining edges each with a new
color. We obtain in this way a valid coloring.

The process consists of at most �log (n/4)� − 1 steps, numbered with i = 2, . . . , �log (n/4)�. In step
i, the current graph, still denoted by G, has m edges, where

n2

2i
< m ≤ n2

2i−1
. (3)

Set

j =
⌊

log n

8 log log n

⌋
and apply Theorem 6, to find and remove j + 1 pairwise crossing edges. This is done repeatedly until m
fails to satisfy (3), and the process continues with step i + 1.

Without loss of generality we can assume that n ≥ 216. A straightforward calculation shows that for
i = 2, . . . , �log (n/4)�, we have

n2

2i
≥ 3n(10 log n)2j−2.

9



The number of independent sets of edges removed in step i is at most

n2

2i

(
log n

8 log log n

)−1

,

so the total total number of colors used is at most

8

( ∞∑
i=2

2−i

)
n2 · log log n

log n
= O

(
n2 · log log n

log n

)
.

After step i = �log n/4�, the number of edges of G is at most

n2

2�log n/4� ≤ 2n7/4,

as required. This completes the proof of Theorem 3.

Acknowledgement. We thank János Pach for pertinent remarks and suggestions.
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[KPT97] G. Károlyi, J. Pach and G. Tóth, Ramsey–Type Results for Geometric Graphs. I, Discrete &
Computational Geometry, 18 (1997), 247–255.

[Kn55] M. Kneser, Aufgabe No. 360, Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2.
Abteilung) (1955), 27.

[Ku79] Y. Kupitz, Extremal problems in combinatorial geometry, Aarhus University Lecture Notes Series,
53 (1979), Aarhus University, Denmark.

[Lo78] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, Journal of Combinatorial The-
ory, Series A, 25 (1978), 319–324.
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[PT94] J. Pach and J. Törőcsik, Some geometric applications of Dilworth’s theorem, Discrete & Compu-
tational Geometry, 12 (1994), 1–7.

[To00] G. Tóth, Note on geometric graphs, Journal of Combinatorial Theory, Series A, 89 (2000), 126–
132.
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