
Covering Point Sets with Two Disjoint Disks or Squares∗

Sergio Cabello † J. Miguel Dı́az-Báñez ‡ Carlos Seara § J. Antoni Sellarès ¶

Jorge Urrutia ‖ Inma Ventura ∗∗

September 2007

Abstract

We study the following problem: Given a set of red points and a set of blue points on
the plane, find two unit disks CR and CB with disjoint interiors such that the number of red
points covered by CR plus the number of blue points covered by CB is maximized. We give
an algorithm to solve this problem in O(n8/3 log2 n) time, where n denotes the total number
of points. We also show that the analogous problem of finding two axis-aligned unit squares
SR and SB instead of unit disks can be solved in O(n log n) time, which is optimal. If we do
not restrict ourselves to axis-aligned squares, but require that both squares have a common
orientation, we give a solution using O(n3 log n) time.

1 Introduction

Let R be a set of red points and let B be a set of blue points on the plane. Suppose that we have
two circular coins CR and CB of the same size. In this paper we study the following problem that
we call the Two-Coin Problem: Place CR and CB on the plane in such a way that the number of
red points covered by CR plus the number of blue points covered by CB is maximized. We allow
CB and CR to cover some red (resp. blue) points, but require them to have disjoint interiors. The
requirement for disjoint interiors is relevant, for example, in facility location problems where the
facilities may interfere negatively with each other, or when their areas of influence are not allowed
to overlap. We use n to denote the total number of points.

We point out that if we do not require CB and CR to have disjoint interiors, then the problem
can be solved independently for each one of the color point sets using well known techniques [5].
Our result also solves the following problem: Given a point set, place two coins with disjoint
interiors such that the number of covered points is maximized. To solve this problem we only need
to consider each point as an element of R and B.

∗A preliminary version of this work appeared at the 21st European Workshop on Computational Geometry [6].
†Department of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubljana, Slovenia,

sergio.cabello@fmf.uni-lj.si. Partially supported by the European Community Sixth Framework Programme
under a Marie Curie Intra-European Fellowship, and by the Slovenian Research Agency, project J1-7218.

‡Departamento de Matemática Aplicada II, Universidad de Sevilla, Spain, dbanez@us.es. Partially supported by
grant BFM2003-04062 and MTM2006-03909.

§Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Spain, carlos.seara@upc.edu.
Supported by projects MCYT-FEDER-BFM2003-00368, Gen-Cat-2001SGR00224 and MCYT-HU2002-0010.

¶Institut d’Informàtica i Aplicacions, Universitat de Girona, Spain, sellares@ima.udg.es. Partially supported
by project TIN2004-08065-C02-02.

‖Instituto de Matemáticas, Universidad Nacional Autónoma de México, urrutia@matem.unam.mx. Supported by
CONACYT of México, Proyecto 37540-A and MTM2006-03909.

∗∗Departamento de Matemáticas, Universidad de Huelva, Spain, iventura@us.es. Partially supported by grant
BFM2003-04062 and MTM2006-03909.

1

A substantially different problem is that of maximizing the number of points covered by two
coins whose interiors may intersect, since then one needs to avoid double counting in the inter-
section of the coins. Work on similar problems has been done by de Berg et al. [3]. Another set
of variants can be obtained by considering coins of different shapes. In this direction, we give an
O(n log n) time optimal algorithm for finding two axis-aligned square coins SB and SR with disjoint
interiors such that the number of red points covered by SR plus the number of blue points covered
by SB is maximized. We also present an O(n3 log n) time algorithm for square coins with arbitrary

orientation, but restrict them to have the same orientation.

Many related problems have been considered in the context of facility location. A natural as-
sumption is that a point is served by a facility if it lies within a given distance from it. The metrics
used are the Euclidean distance or the L∞ (box) metric. Many of these problems also arise in oper-
ations research [15]. In particular, the problem of placing a unit disk so as to maximize the number
of points covered by the disk was first considered by Drezner [7]. Chazelle and Lee [5] provided a
quadratic time algorithm to solve this problem. Within the context of locational analysis, models
considering semi-obnoxious facilities [16] or cannibalization [17] naturally lead to problems where
the optimal solution must consist of disjoint disks.

In pattern recognition and classification problems, a standard method to select prototypes that
represent a class is to perform cluster analysis on the training data [8]. The clustering can be
obtained by using simple geometric shapes such as disks or squares. In general, the problem we
consider fits under the class of constrained clustering [10]. In this context, recent research deals
with the following problem: given sets of red and blue points on the plane, maximize the number of
blue points covered by a given object while avoiding all the red points. In particular, Aronov and
Har-Peled [1] consider this problem when dealing with disks. Segal [21] and Liu and Nadiak [14]
consider the case of axis-parallel squares.

Organization. The rest of the paper is organized as follows. In the next section we present an
algorithm to solve the Two-Coin Problem. As a main subroutine for our solution, we use a result
of Katz and Sharir [13] for representing the incidences between points and congruent annuli. In
Section 3.1 we show an asymptotically optimal algorithm for covering with axis-aligned unit squares
that have disjoint interiors. We use techniques similar to those in Katz et al. [12]. In Section 3.2
we extend our algorithm for squares with arbitrary, but common orientation. Finally, in Section 4,
we discuss extensions of our results to non-congruent shapes and other optimization objectives.

2 The Two-Coin Problem

In this section we present an O(n8/3 log2 n) time algorithm to solve the Two-Coin Problem. This
improves our previous result presented in [6], where an O(n3 log n) time algorithm to solve the
same problem was presented.

2.1 A Basic Observation

Consider an optimal placement of C∗
R and C∗

B. We show next that we have to consider only solutions
that have certain point configurations on their boundaries.

Lemma 1 If any of the disks C∗
R and C∗

B cover more than one point, then they can be moved to a

new optimal placement such that one of the disks has at least two points on its boundary and the

other has at least one.

2

Proof: We show first that C∗
R and C∗

B can be translated to a position where each of them has
at least one point on its boundary. Move the disks C∗

R and C∗
B away from each other in opposite

directions along the line joining their centers until each of their respective boundaries meets a point,
say pR and pB respectively; see Figure 1a–b.

ba c d e

pR

pB

Figure 1: Examples showing some of the steps in the proof of Lemma 1.

Now rotate C∗
R and C∗

B around pR and pB respectively and in the clockwise direction keeping
their interiors disjoint; they may have to rotate at different speeds if they become tangent (Fig-
ure 1b–d). Observe that such rotations always exist unless C∗

R or C∗
B touch both pR, pB , in which

case our result would be proved (Figure 1e). Suppose then that such rotations are possible. Perform
them until some point enters or exists any of the disks, at which point we stop our rotations. At
this point we satisfy the conditions of our result (Figure 1d). 2

Henceforth, we assume that the optimal solution to the Two-Coin Problem is of size at least 3,
as otherwise the problem can be trivially solved.

2.2 The Arrangement of Red and Blue Circles

For each red point p ∈ R (resp. blue point) we consider the red (resp. blue) unit circle Cp with
center in p. Let A be the arrangement determined by C = {Cp; p ∈ R ∪ B}, and let V,E, and F
denote the set of vertices, edges, and faces of A, respectively. Since all the circles have the same
radius, A can be obtained in quadratic time [5, 20].

(3, 1)

(0, 2)

Figure 2: Arrangement A and the labels (RF(f),BF(f)) for a pair of cells.

To each face f of the arrangement A, we associate the pair of numbers (RF(f),BF(f)) such
that RF(f) (resp. BF(f)) is the number of red circles (resp. blue circles) that contain f . Clearly a
unit disk with center at a point x ∈ f covers exactly RF(f) red and BF(f) blue points, respectively
(Figure 2).

3

Using standard techniques, we can traverse the dual graph of A in O(n2) time. Observe that for
any two adjacent faces f and f ′ separated by an arc of a red circle, |RF(f)−RF(f ′)| = 1. Using
this fact, we can during a traversal of the faces of A calculate the values RF(f), for all f ∈ A.
Similarly we can calculate the values BF(f), for all f ∈ A. For an edge e ∈ A separating two faces
f, f ′ ∈ A we define RE(e) = max{RF(f),RF(f ′)}. For a vertex v ∈ A we define RV(v) to be the
maximum RF(f) over all the faces f that contain v on their boundaries. In a similar way we can
define BE(e) and BV(v). Clearly all the parameters defined above for the vertices, edges, and faces
of A can be calculated during a traversal of A in quadratic time.

For technical reasons that will become apparent in Lemma 2, we need to assume that no edge
of A covers more than π of the arc of a circle. Therefore, we subdivide each edge that has length
over π into pieces; we can treat the new endpoints that we have introduced as normal vertices of
the arrangement.

2.3 The Problem

Observe that a unit circle with center at a vertex of A (arising as the intersection of two circles)
passes through at least two points of R∪B, while a unit circle with center on the interior of an edge
of A passes through exactly one point of R ∪ B. Therefore by Lemma 1, to solve the Two-Coin
Problem, we need to consider only disks with centers on the edges or vertices of A.

Given a unit red circle CR (resp. blue circle CB) let |CR| (resp. |CB |) be the number of red
(resp. blue) points lying in CR (resp. CB). Let e be an edge in E with endpoints ve, v

′
e ∈ V , and

let Q be a point set in the plane. We define MB(e,Q) to be the maximum value |CB |+ |CR| such
that the center of CB belongs to e ∪ {ve, v

′
e}, the center of CR belongs to Q, and CB and CR have

disjoint interiors. If all points of Q are such that the interior of the unit circle centered at them
intersects the interior of any unit circle with center on e ∪ {ve, v

′
e}, we define MB(e,Q) to be 0.

MR(e,Q) is defined in a similar way.

From Lemma 1, it follows that the optimal solution to the Two-Coin Problem is given by:

max
e∈E

{MB(e, V),MR(e, V)}.

We will restrict ourselves to compute maxe∈E{MB(e, V)}; the other case is symmetric. For
simplicity, we will state our formulas under the assumption that MB(e, V) > 0.

2.4 An Edge

Given a point q on the plane and an edge e of A, let ∆(e, q) := sup{d(q′, q) | q′ ∈ e}, where d(·, ·)
denotes the Euclidean distance. Since e is an arc of a circle, it holds that ∆(e, q) is reached at e or
at some of its endpoints, that is ∆(e, q) = max{d(q′, q) | q′ ∈ e∪{ve, v

′
e}}. Therefore, if ∆(e, q) ≥ 2,

there is a point qe ∈ e ∪ {ve, v
′
e} such that the unit disks with centers at q and qe have disjoint

interiors.
If q is a point such that ∆(e, q) ≥ 2, then

MB(e, {q}) = RV(q) +















BE(e) if d(ve, q) < 2, d(v′e, q) < 2.
BV(ve) if d(ve, q) ≥ 2, d(v′e, q) < 2.
BV(v′e) if d(ve, q) < 2, d(v′e, q) ≥ 2.
max{BV(ve),BV(v′e)} if d(ve, q) ≥ 2, d(v′e, q) ≥ 2.

This holds because BE(e) ≤ BV(ve) and BE(e) ≤ BV(v′e), which implies that, whenever
d(ve, q) ≥ 2 or d(v′e, q) ≥ 2, it is better to place the center of the blue disk at an endpoint of
e.

4

e ve

v′
e

we

w′

e

c(e)
C(e)

He

e ve

v′
e

Xe

Figure 3: Left: notation concerning an edge e. Right: the region Xe.

Obviously, we have MB(e, V) = max{MB(e, {q}) | q ∈ V, ∆(e, q) ≥ 2} and therefore

MB(e, V) = max







BE(e) + RV(q) | q ∈ V, ∆(e, q) ≥ 2
BV(ve) + RV(q) | q ∈ V, d(ve, q) ≥ 2
BV(v′e) + RV(q) | q ∈ V, d(v′e, q) ≥ 2







. (1)

Given an edge e ∈ A we characterize now the set of points q such that ∆(e, q) ≥ 2. Let C(e)
denote the circle containing e, and let c(e) be the center of C(e). Let we and w′

e be the points on
C(e) symmetric to ve and v′e with respect to c(e), and let He be the closed half-plane with we, w

′
e

in its boundary that does not contain ve. See Figure 3.
The closed annulus centered at a point p with inner radius r and exterior radius r′ will be

denoted by Ann(p, r, r′). For v ∈ V , let Av = Ann(v, 2,∞), let Ae = Ann(c(e), 1,∞), and let
Xe = Ae ∩ He.

If e is an edge of A of length at most π, the following lemma characterizes the set of points q
such that ∆(e, q) ≥ 2. The proof of this lemma follows immediately from Figures 3 and 4.

Lemma 2 For any edge e ∈ E we have

{q ∈ R
2 | ∆(e, q) ≥ 2} = Ave

∪ Av′e ∪ Xe.

For a subset Q ⊆ V , define R(Q) = max{RV(v) | v ∈ Q}. Because of Lemma 2, equation (1),
and the fact that both RV(ve) and RV(v′e) ≥ RE(e), it is clear that for any edge e ∈ E we have

MB(e, V) = max







BE(e) + R(V ∩ Xe)
BV(ve) + R(V ∩ Ave

)
BV(v′e) + R(V ∩ Av′

e
)







. (2)

2.5 Main Result and Discussion

We index the edges E in decreasing order of “quality”, that is, let e1, . . . , ek be the elements of
E sorted such that BE(ei) ≥ BE(ei+1), for 1 ≤ i < k. Let Wi = V ∩ Xei

, for 1 ≤ i ≤ k; it
holds that ∆(ei, v) ≥ 2 for all v ∈ Wi. Note that if v ∈ Wi and v ∈ Wj , with j < i, then
BE(ej) + R(v) ≥ BE(ei) + R(v), and there is no need to consider as candidate the blue disk with
center in ei and the red disk with center at v. More generally, if we define Vi = V \ (

⋃

j<i Wj), for
1 ≤ i ≤ k, then it holds that

max
e∈E

{BE(e) + R(V ∩ Xe)} = max
i=1,...,k

{BE(ei) + R(Vi ∩ Xei
)}. (3)

5

e

ve

v
′

e

we

w
′

e

2

2

we

w
′

e

Figure 4: Region of interest in Lemma 2 for edge e, together with a zoom to the most complex
part. In the zoom, the region {p ∈ R

2 | ∆(e, p) ≥ 2} \ (Ave
∪ Av′

e
) is in darker grey. This region is

covered by Xe.

The main advantage of the formulation on the right side is that the sets Vi ∩ Xei
, 1 ≤ i ≤ k are

pairwise disjoint, which allows a better manipulation. We can use equations (2) and (3) to rewrite
our objective as follows

max
e∈E

{MB(e, V)} = max
e∈E

max







BE(e) + R(V ∩ Xe)
BV(ve) + R(V ∩ Ave

)
BV(v′e) + R(V ∩ Av′

e
)







= max

{

maxv∈V {BV(v) + R(V ∩ Av)}
maxe∈E{BE(e) + R(V ∩ Xe)}

}

= max

{

maxv∈V {BV(v) + R(V ∩ Av)}
maxi=1,...,k{BE(ei) + R(Vi ∩ Xei

)}

}

.

We next show how to calculate the two values maxv∈V {BV(v)+R(V ∩Av)} and maxi=1,...,k{BE(ei)+
R(Vi ∩Xei

)}. The approach for this is based on a compact representation of the subset of vertices
of V that are inside the annuli Av, v ∈ V and Ae, e ∈ E.

Let us recall that a bipartite graph G is a graph whose vertex set can be split into two disjoint
subsets X and Y such that all the edges of G join vertices in X to vertices in Y . If for all x ∈ X
and y ∈ Y the edge xy is in G, then G is called a complete bipartite graph. In this case the sets
X and Y are sufficient to represent G, and we will denote G as G = (X,Y). We will rely on the
following result by Katz and Sharir regarding the incidences between points and congruent annuli.

Theorem 1 (Katz, Sharir [13]) Let M be a set of n congruent annuli and P be a set of n points.

Then it is possible to compute the set of pairs {(A, p) | A ∈ M,p ∈ P, p ∈ A} as a collection of

edge disjoint bipartite graphs Gj = (Mj , Pj), Mj ⊂ M , Pj ⊂ P , in O(n4/3 log n) time and space,

1 ≤ j ≤ m where m is O(n4/3). Moreover
∑

j(|Mj | + |Pj |) = O(n4/3 log n).

The next result follows from the fact that the size of V is quadratic:

Lemma 3 We can compute the value maxv∈V {BV(v) + R(V ∩ Av)} in O(n8/3 log n) time.

6

Proof: We have to identify for each Av, v ∈ V , the point p ∈ V ∩ Av with the largest RV(p).
Let M = {Av | v ∈ V }, which consists of O(n2) annuli. By Theorem 1 we can obtain a compact
representation of {(Av , p) | Av ∈ M, p ∈ V, p ∈ Av} as a collection of m = O(n8/3) edge disjoint
bipartite graphs Gj = (Mj , Pj), Mj ⊂ M , Pj ⊂ V , in O(n8/3 log n) time and space.

For each 1 ≤ j ≤ m let Rj be the largest RV(p) such that p ∈ Pj. Since
∑

j |Pj | is O(n8/3 log n)

the set of all Rj can be computed in O(n8/3 log n) time, j = 1, . . . ,m.
Initialize a variable Rv = 0 for each v ∈ V , which will eventually attain the value R(V ∩ Av).

Next for i = 1, . . . ,m repeat the following: For all Av ∈ Mi let Rv be the maximum between the
current value of Rv and Rj. Clearly at the end of our process for all Av, the final value of Rv

equals that of the largest RV(p), p ∈ V ∩ Av, and hence Rv = R(V ∩ Av). 2

Combining the same technique with semi-dynamic data structures for maintaining the convex
hull [4, 11] we obtain the following:

Lemma 4 We can compute the value maxi=1,...,k{BE(ei) + R(Vi ∩ Xei
)} in O(n8/3 log2 n) time.

Proof: Consider the multiset of annuli M = {Ae | e ∈ E}. By Theorem 1 we can obtain a compact
representation of {(Ae, p) | Ae ∈ M, p ∈ V, p ∈ Ae} as a collection of m = O(n8/3) edge disjoint
bipartite graphs Gj = (Mj , Pj), Mj ⊂ M , Pj ⊂ V , in O(n8/3 log n) time and space.

For any edge e ∈ E, let Je be the set of indices that contain Ae, that is, Je = {j ∈ {1, . . . ,m} |
Ae ∈ Mj}. For any vertex v ∈ V , let Jv be the set of indices that contain v, that is, Jv = {j ∈
{1, . . . ,m} | v ∈ Pj}. We can compute the indices Je, e ∈ E, and the indices Jv, v ∈ V , in
O(n8/3 log n) time by scanning the bipartite graphs Gj , 1 ≤ j ≤ m. Note that V ∩Aei

=
⋃

j∈Jei

Pj ,

and the union is disjoint because of the properties of Theorem 1.
For each 1 ≤ j ≤ m we store the point set Pj in a semi-dynamic data structure DSj for main-

taining the convex hull [4, 11]: it can be constructed in O(|Pj | log |Pj |) = O(|Pj | log n) time, and
supports deletions and extreme-point queries (find the point that is extreme in a query direction) in
amortized O(log |Pj |) = O(log n) time. Since constructing DSj takes O(|Pj | log n) time, we spend
∑

j O(|Pj | log n) = O(n8/3 log2 n) time.
If at some stage DSj contains a set of points Qj, then for any given half-plane H we can

construct the set Qj ∩ H and remove it from DSj in O((|Qj ∩ H| + 1) log n) time: we query DSj

to find the point p ∈ Qj that is extreme in the direction perpendicular to the boundary of the
half-plane, and if p is contained in H, then we remove it from DSj and repeat the process.

Next we compute the sets Vi ∩ Xei
, 1 ≤ i ≤ k, as follows. We proceed in k steps i = 1, . . . , k,

and use Qj for the point set stored in the data structure DSj , 1 ≤ j ≤ m at any given time. During
step i, we compute Zi =

⋃

j∈Jei

(Qj ∩ Hei
), and remove all appearances of elements v ∈ Zi from

each of the data structures DSj, 1 ≤ j ≤ m. This finishes the description of the algorithm. We
claim that Zi = Vi ∩ Xei

, 1 ≤ i ≤ k. To see this, note that through the process we maintain the
invariant that Vi =

⋃

j Qj at the beginning of each step i. This clearly holds for i = 1. For i > 1,
the invariant holds because V ∩ Aei

=
⋃

j∈Jei

Pj , which implies that Vi ∩ Aei
=

⋃

j∈Jei

Qj , and

therefore (Vi∩Xei
) = (Vi∩Aei

∩Hei
) =

⋃

j∈Je
i

(Qj ∩Hei
). As claimed, it follows that Zi = Vi∩Xei

,

1 ≤ i ≤ k, and we can return maxi=1,...,k{BE(ei) + R(Zi)} as the desired value.
The algorithm we have described can be implemented to take O(n8/3 log2 n) time as follows. In

step i, we compute Zi querying each DSj, j ∈ Jei
as discussed above, and we spend

∑

j∈Jei

O((|Qj∩
Hei

| + 1) log n) = O((|Vi ∩ Xei
| + |Jei

|) log n) time. Here we have used that Vi ∩ Aei
=

⋃

j∈Jei

Qj,

where the union is disjoint. Using that the sets Vi ∩ Xei
are pairwise disjoint, 1 ≤ i ≤ k, we can

7

Figure 5: A collection of unit circles and a zoom to a part of the drawing. When the set of unit
disks centered at points of B looks like in the figure, placing the center of the blue unit coin CB in
the grey faces of the arrangement would cover most points. A similar scenario but with red circles
that is far enough gives rise to Θ(n4) optimal solutions to the Two-Coin Problem.

bound the time used to compute Z1, . . . , Zk by

k
∑

i=1

O((|Vi ∩ Xei
| + |Jei

|) log n) =
k

∑

i=1

O(|Vi ∩ Xei
| log n) +

∑

e∈E

O(|Je| log n)

= O(|V | log n) + O(n8/3 log2 n)

= O(n8/3 log2 n).

The deletion of v ∈ Zi has to be done in DSj, j ∈ Jv , and we spend O(|Jv |) time plus the
time needed to perform the deletions. Since each point v ∈ V is deleted at most once during the
whole algorithm, and deleting a point from DSj takes amortized O(log n) time, it follows that all
deletions take at most

∑

v∈V O(|Jv | log n) = O(n8/3 log2 n) time. 2

From the preceding discussion and Lemmas 3 and 4, we conclude our main result.

Theorem 2 Given a set of red points and a set of blue points on the plane, we can find in

O(n8/3 log2 n) time positions for two interior-disjoint unit disks CR and CB such that the num-

ber of red points covered by CR plus the number of blue points covered by CB is maximized.

Observe that there may be Θ(n4) optimal solutions to our problem. An example showing this
bound can be obtained as follows. Given n, construct an instance with n/2 blue points that has
Θ(n2) optimal solutions for the problem of maximum coverage unit disk problem, make a copy and
color it red, and, finally, place the red and blue copies far apart; see Figure 5 for an example. It
follows that there are Θ(n2) optimal placements for the blue color, and the same for the red color.
Since the optimal placements for red and blue do not interact, we have Θ(n4) optimal solutions to
our problem.

Finally, note that the problem we are considering is 3SUM-hard [9]: the 3SUM-hardness result
by Aronov and Har-Peled [1] regarding depth in arrangements of disks can be easily adapted to
our problem.

8

3 Two Disjoint Squares

In this section we consider the case when our coins are two axis-parallel unit squares SR and SB.
As in the previous section, we restrict ourselves to squares of the same size, i.e., unit squares. This
condition can be easily removed, leaving the results unchanged. We will present a solution that
requires O(n log n) time. This improves the result presented in a previous version of this work [6],
where an algorithm using O(n2) time was given. We also present an algorithm for the same problem
but removing the condition that the squares must be axis-aligned.

3.1 Two Disjoint Axis-Parallel Unit Squares

Let S∗
R and S∗

B be an optimal solution. Observe first that since S∗
R and S∗

B are isothetic, there is
a horizontal or vertical line h that separates them. Without loss of generality, assume that h is
horizontal, and that S∗

R is below and S∗
B is above the line h (Figure 6).

h

h

S∗

B

S∗

R

S∗

B

S∗

R

Figure 6: Assumptions on how the optimal solution looks like when the optimal squares have a
separating horizontal line and the red square is below it.

Assume that S∗
R has a red point on its top edge, otherwise we can slide it down until its top

side meets a red point. Similarly we can assume that S∗
B contains a blue point on its bottom edge.

We can also assume that the line h contains a red point, for otherwise we can simply slide it down
until it hits an element of R. Using these observations, we will outline a process to find an optimal
pair S∗

R and S∗
B in O(n log n) time. We consider the following subproblem:

Problem 1 For each point p ∈ R ∪ B, find the unit square below the horizontal line hp passing

through p which contains the maximum number R(p) of red points.

To solve this problem, we will use segment trees in a similar way to that used by Katz et al. [12]
to solve the following problem:

Theorem 3 (Katz et al. [12]) Given a set P of n weighted points within an axis-parallel rectan-

gle R, and another axis-parallel rectangle Q which is smaller than R, it is possible to place Q within

R in O(n log n) time, such that the sum of the weights of the points covered by Q is minimized.

To solve Problem 1 we sweep a horizontal slab S of width 1 from bottom to top; see Figure 7.
During the sweep, we maintain a segment tree structure whose root stores the coordinates of the
corners of a red unit square within the slab that contains the maximum number of red points. The
events when the segment tree has to be updated are:

9

1. a point of R hits the bottom boundary line of S, or

2. a point of R hits the top boundary line of S.

Each of these events can be handled in the segment tree in O(log n) time, using the same
approach as Katz et al. [12]. Since there are 2n events, we need O(n log n) time overall.

1

Figure 7: Sweeping the slab. The root of the segment tree keeps track of a best red square within
the slab.

For a point p ∈ R ∪ B, let RSp be a square below the horizontal line hp passing trough p
that contains the maximum number R(p) of red points. Observe that during the sweep of S from
bottom to top, we can maintain the position of RSp; each time we reach a point of R ∪ B we
update the segment tree, if needed, and compare the best square within the slab with the overall
best square until then. We conclude the following result.

Lemma 5 In O(n log n) time we can find, for all points p ∈ R ∪ B, the square RSp that contains

the largest possible number R(p) of red points below hp.

In a similar way we can determine for each point p ∈ R ∪ B the position of the square BSp

above hp that contains the largest number B(p) of blue points. To solve our problem, all we need
to do is to find the point p ∈ R∪B that maximizes R(p)+B(p). Clearly this can be done in linear
time. Thus we have:

Theorem 4 Given a set of red points and a set of blue points on the plane, we can find in O(n log n)
time positions for two axis-parallel unit-squares SR and SB with disjoint interiors such that the

number of red points covered by SR plus the number of blue points covered by SB is maximized.

Now we show that the algorithm above is asymptotically optimal by proving an Ω(n log n) time
lower bound. This lower bound holds in the algebraic tree model of computation, and we will show
it by reduction from the following problem.

The ǫ-distance problem: Given n real numbers x1, x2, . . . , xn and a positive real number ǫ > 0,
determine whether there exists a permutation σ of (1, 2, . . . , n) such that xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n),

and xσ(i+1) > xσ(i) + ǫ, for all i, 1 ≤ i ≤ n − 1.

Theorem 5 [19] The ǫ-distance problem requires Ω(n log n) time under the algebraic computation

tree model.

Proof: The ǫ-distance problem is equivalent to the problem of deciding if a given (x1, . . . , xn)
belongs to the set

W = {(x1, x2, . . . , xn) ∈ R
n | |xi − xj | > ǫ for all i 6= j}.

It is easy to see that W consists of n! connected components, and therefore the lower bound follows
from Ben-Or’s theorem [2, 18]. 2

10

Theorem 6 Finding positions for two axis-parallel unit-squares SR and SB with disjoint interiors

such that the number of red points covered by SR plus the number of blue points covered by SB is

maximized requires Ω(n log n) time in the algebraic computation tree model.

Proof: Let S = {x1, x2, . . . , xn} and a positive real number ǫ > 0 be an instance for the ǫ-distance
problem, and assume w.l.o.g. that xn = max(S). Let R = {(x1, 0), (x2, 0), . . . , (xn, 0)}, and let
B = {(b1, 0), (b2, 0), . . . , (bn, 0)}, where bi = (xn + 4ǫ) + xi, i = 1, . . . , n. See Figure 8.

Let us now solve the Two-Coin Problem for R ∪ B, using ǫ-squares instead of unit-squares.

x1 xn b1 bn

ǫ

Figure 8: Red and blue points in the reduction for Theorem 6.

By construction, S∗
R and S∗

B cover only red (resp. blue) points, and both of them cover exactly
the same number of points. It is clear that the answer to the ǫ-distance problem for S is affirmative
if and only if the number of points covered by S∗

R and by S∗
B is exactly one. 2

3.2 Two Disjoint Arbitrarily Oriented Squares

We now consider a generalized version of the two axis parallel squares problem. We want to
determine two disjoint unit squares SB and SR such that they have the same orientation such that
the number of red points covered by SR plus the number of blue points covered by SB is maximized.

Our purpose is to determine a finite number of candidate orientations and then, for each of
them, apply the algorithm described in the previous subsection. In order to determine candidate
orientations, we will use the following result.

Lemma 6 The optimal squares S∗
R and S∗

B can be moved to a new position in the plane such that

one of the two squares either: (i) has at least three points on its edges, two of them on two adjacent

edges; or (ii) has at least two points on its edges, one of them on a corner.

Proof: Since S∗
R and S∗

B have common orientation and disjoint interior there is a line h, parallel
to two edges of each square, that separates them. Without loss of generality, assume that h is
horizontal and that S∗

R is above and S∗
B below h.

Observe that since S∗
R (S∗

B) is an optimal solution, while translating and rotating S∗
R (S∗

B) the
first red (blue) point met by an edge of S∗

R (S∗
B) is a point belonging to R ∩ S∗

R (B ∩ S∗
B), so the

number of red (blue) points covered by S∗
R (S∗

B) does not change.
Slide S∗

R up until its bottom edge meets a red point r1, and S∗
B down until its top edge meets

a blue point b1. Assume that b1 is located to the left or on the vertical line through r1. Now we
slide S∗

B to its left until its right edge meets a blue point b2 and S∗
R to its right until its left edge

meets a red point r2. Observe that it can occur that r2 = r1 or/and b2 = b1.
Finally, we simultaneously apply a motion to S∗

R and S∗
B as follows. Maintaining their common

orientation, we rotate S∗
R and S∗

B in the clockwise direction while requiring the bottom and left
edge of S∗

R to pass through r1 and r2 and the top and right edge of S∗
B to pass through b1 and b2 at

all times. During the motion the bottom-left (top-right) corner of S∗
R (S∗

B) moves along an arc of
the circle of diameter r1r2 (b1b2). If r2 = r1 (b2 = b1) the motion of S∗

R (S∗
B) is a rotation around

the bottom-left (top-right) corner of S∗
R (S∗

B). The motion terminates as soon as: i) an edge of S∗
R

(S∗
B) meets one more red (blue) point r3 (b3); ii) a corner of S∗

R (S∗
B) meets r1 or r2 (b1 or b2).

11

In the case that b1 is located to the right of the vertical line through r1 we proceed similarly,
but rotating S∗

R and S∗
B in counterclockwise direction. In any case the rotation angle is at most

π/2 radians and, by the choice of the orientation of the rotation, during the movement S∗
R and S∗

B

remain disjoint. 2

Let us see that conditions (i) and (ii) of Lemma 6 determine a finite number of candidate
orientations. Figure 9 shows the four cases than can arise according to Lemma 6. Squares of cases
a) and b) correspond to condition (i) and squares of cases c) and d) correspond to condition (ii).

p

q

p

q

p
q

p

q

case a) case b) case c) case d)

Figure 9: Basic cases.

In the four cases, points p and q determine the orientation of the square. Next we explain how
to determine this orientation. Cases a) and c): points p and q are on the same edge of a unit square.
Consequently d(p, q) ≤ 1. The line passing through p and q determines the orientation of the unit
square. Cases b) and d): points p and q are on opposed edges of a unit square. Consequently, it
holds that 1 ≤ d(p, q) ≤

√
2. The parallel lines passing through p and q at distance 1 determine

the orientation of the unit square. Observe that when d(p, q) = 1, the orientation obtained in cases
a-c) and b-d) coincides. From this discussion, we have the following result.

Lemma 7 Candidate orientations for optimal squares SR and SB can be obtained from pairs of

points p, q of the same color such that:

(1) d(p, q) ≤ 1 and the candidate orientation is determined by the line passing through p and q;

(2) 1 < d(p, q) ≤
√

2 and the candidate orientation is determined by the two parallel lines passing

through p and q at distance 1.

We can now solve the arbitrarily oriented squares problem as follows. First, compute the O(n2)
candidate orientations determined by Lemma 7, and then apply to each candidate orientation
the O(n log n) time algorithm from Theorem 4 to solve the two disjoint axis-parallel unit-squares
problem. This leads to the following result.

Theorem 7 Given a set of red points and a set of blue points on the plane, we can find in

O(n3 log n) time positions for two unit-squares SR and SB with arbitrary but common orienta-

tion and disjoint interiors such that the number of red points covered by SR plus the number of blue

points covered by SB is maximized.

4 Conclusions

We have presented algorithms for the following problem: Given a set of red points and a set of
blue points, find two unit disks (or unit squares) CR and CB with disjoint interiors that maximize
the number of red points covered by CR plus the number of blue points covered by CB . As noted
in the introduction, the same algorithms can be used to solve the monochromatic version of the
problem, where we only have one point set and we want to maximize the number of points covered
by two interior-disjoint unit disks (or squares).

12

A natural extension of the problem consists in assigning weight to the points, and then opti-
mizing the sum of the weights of the red points covered by the red disk plus the sum of the weight
of the blue points covered by the blue disk. Our algorithms can be easily modified to handle this
generalization.

Our algorithms can also be extended to handle coins of different sizes, or when they are rect-
angles of a given shape. The presentation for unit-squares directly carries out to rectangles. For
differently-sized disks, the relevant region for an edge can also be expressed as the union of two
congruent annuli and the intersection of an annulus and a halfplane. The rest of the presentation
carries out in the same way.

We note that our algorithms can be easily modified for any optimization function that is mono-
tone on the number of red points covered by CR and the number of blue points covered by CB,
that is, any function that increases whenever CR or CB cover more red or blue points respec-
tively. For example, we could be interested in disks (or rectangles) CR, CB maximizing the value
min{|R ∩ CR|, |B ∩ CB |}. The same time bounds we have obtained here apply for this problem.

Finally we left as a research problem that of finding two disjoint squares SB and SR with
arbitrary, but not necessarily equal orientations, such that the number of blue points covered by
SB plus the number of red points covered by SR is maximized.

Acknowledgements

These problems studied here were posed and partially solved during the Second Spanish Workshop

on Geometric Optimization, July 5–10, 2004, El Roćıo, Huelva, Spain. The authors would like to
thank other workshop participants for helpful comments.

References

[1] B. Aronov and S. Har-Peled. On approximating the depth and related problems. Proceedings

16th Annual ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 886–894.

[2] M. Ben-Or. Lower bounds for algebraic computation trees. Proceedings of the fifteenth Annual

ACM Symposium on Theory of Computing, 1983, pp. 80–86

[3] M. de Berg, S. Cabello, and S. Har-Peled. Covering many or few points with unit disks. In
WAOA 2006, LNCS 4368, pp. 55–68.

[4] G. S. Brodal and R. Jacob. Dynamic Planar Convex Hull. Proceedings of the 43rd Annual

Symposium on Foundations of Computer Science, 2002, pp. 617–626.

[5] B. Chazelle and D. T. Lee. On a circle placement problem. Computing, Vol. 36, 1986, pp. 1–16.

[6] J. M. D́ıaz-Báñez, C. Seara, J. A. Sellarès, J. Urrutia, and I. Ventura. Covering point sets with
two convex objects. In 21st European Workshop on Computational Geometry, 2005.

[7] Z. Drezner. On a modified one-center model. Management Science, 27, 1981, pp. 848–851.

[8] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley and Sons, Inc., New York,
2001.

[9] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational geometry.
Comput. Geom. Theory Appl., 5, 1995, pp. 165–185.

[10] J. A. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

13

[11] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT, 32,
1990, pp. 249–267.

[12] M. J. Katz, K. Kedem, and M. Segal. Improved algorithms for placing undesirable facilities.
Computers & Operations Research, 29, 2002, pp. 1859–1872.

[13] M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM J.

Computing, 26, 1997, pp. 1384–1408.

[14] Y. Liu and M. Nadiak. Planar case of the maximum box and related problems. Proceeding of

the Canadian Conference on Computational Geometry, 2003, pp. 11–13.

[15] R. F. Love, J. G. Morris, and G. O. Wesolowsky. Facilities Location. North-Holland, Amster-
dam, Chapter 3.3, 1988.

[16] Y. Ohsawa, F. Plastria, and K. Tamura. Euclidean push-pull partial covering problems. Com-

puters & Operations Research, 33 (12), 2006, pp. 3566–3582.

[17] F. Plastria. Avoiding cannibalisation and/or competitor reaction in planar single facility loca-
tion. Journal of the Operational Research Society of Japan, 48 (2), 2005, pp. 148–157.

[18] F. P. Preparata and M. I. Shamos. Computacional Geometry, An Introduction. Springer-

Verlag, 1988.

[19] V. Sacristán. Lower bounds for some geometric problems. Technical Report MA2-IR-98-0034,
Universitat Politècnica de Catalunya, 1998.

[20] M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric applications.

Cambridge University Press, 1995.

[21] M. Segal. Planar maximum box problem. Journal of Mathematical Modelling and Algorithms,
3, 2004, pp. 31–38.

14

