
Spanning trees of multicoloured

point sets with few intersections

J. Leaños∗ C. Merino†‡ G. Salazar∗§ J. Urrutia†¶

1 July 2003

Abstract

Kano et al. proved that if P0, P1, . . . , Pk−1 are pairwise disjoint col-
lections of points in general position, then there exist spanning trees
T0, T1, . . . , Tk−1, of P0, P1, . . . , Pk−1, respectively, such that the edges
of T0 ∪ T1 ∪ · · · ∪ Tk−1 intersect in at most (k − 1)n − k(k − 1)/2 points.
In this paper we show that this result is asymptotically tight within a
factor of 3/2. To prove this, we consider alternating collections, that is,
collections such that the points in P := P0 ∪P1 ∪ · · · ∪Pk−1 are in convex
position, and the points of the Pi’s alternate in the convex hull of P .

1 Introduction

Throughout this paper we consider collections {P0, P1, . . . , Pk−1} of point sets
in the plane. Our interest lies in the following question: what is the minimum
number of intersections among the edges of a collection {T0, T1, . . . , Tk−1} of
spanning trees for {P0, P1, . . . , Pk−1}, respectively?

In order to avoid unnecessary complications, it makes sense to assume that
our collections Pi satisfy certain properties. It is pointless to consider the case
in which some Pi are empty. Similarly, having two different Pi’s with nonempty
intersection, or having that ∪k−1

i=0 Pi is not in general position leads to patho-
logical situations. With these observations in mind, we arrive to the following
definition.

Definition A collection of {P0, P1, . . . , Pk−1} of point sets in the plane is good
if (i) each Pi is nonempty; (ii) the Pi’s are pairwise disjoint; and (iii) ∪k−1

i=0 Pi is
in general position.

Let {P0, P1, . . . , Pk−1} be a good collection of point sets in the plane. A
corresponding set of trees for P is a collection T = {T0, T1, . . . , Tk−1} such that
Ti is a spanning tree for Pi, for i = 0, . . . , k − 1.
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Given a set of trees {T0, T1, . . . , Tk−1}, its intersection number int({T0, T1,
. . . , Tk−1}) is the total number of pairwise intersections of edges in T0 ∪ T1 ∪
· · · ∪ Tk−1.

With this terminology, our problem of interest outlined above can be para-
phrased as follows.

Question Let {P0, P1, . . . , Pk−1} be a good collection of point sets in the plane.
What is the minimum int({T0, T1, . . . , Tk−1}) taken over all corresponding sets
of trees {T0, T1, . . . , Tk−1} for {P0, P1, . . . , Pk−1}?

This question was fully answered for the case k = 2 by Tokunaga [2]. How-
ever, the methods developed by Tokunaga do not seem to extend to k > 2.

In [1], Kano et al. gave the following general upper bound.

Theorem 1 (Kano et al.) Let P = {P0, P1, . . . , Pk−1} be a good collection of
point sets in the plane, and let n = | ∪k−1

i=0 Pi|. Then there is a corresponding
set of trees T for P such that int(T ) ≤ (k − 1)n − k(k − 1)/2.

Naturally, such a bound is of interest only if it is not too far from optimal.
In the same paper, they also proved that, indeed, this bound is asymptotically
tight up to a constant factor.

Theorem 2 (Kano et al.) For each fixed k, the bound of Theorem 1 is asymp-
totically within a factor of 2 from the optimal solution.

One of the highlights and main motivations of the present work is a proof
that the bound in Theorem 1 is even tighter than as established in Theorem 2.

Theorem 3 For each fixed k, the bound of Theorem 1 is asymptotically within
a factor of 3/2 from the optimal solution.

This improvement is actually a straightforward consequence of an exhaus-
tive analysis we perform on the special case in which the points in ∪k−1

i=0 Pi are
in convex position, and satisfy certain alternation condition (see proof after
Theorem 10).

To test the tightness of Theorem 1, one needs to look for collections P for
which the edges in any corresponding set of trees intersect a large number of
times.

While seeking for such collections P , it is quite natural to explore collections
for which the points in ∪k−1

i=0 Pi are in convex position. Moreover, it is intuitively
appealing to propose that the points in ∪k−1

i=0 Pi be arranged so that the points
of each Pi “alternate as much as possible” with the points of the other Pj ’s.

Definition A good collection P = {P0, P1, . . . , Pk−1} is alternating if the points
in ∪k−1

i=0 Pi are in convex position, and they can be labelled p0, p1, . . . , psk−1, so
that they appear in this cyclic order in the convex hull of ∪k−1

i=0 Pi and, moreover,
Pi = {pi, pi+k, . . . , pi+(s−1)k}, for i = 0, 1, . . . , k − 1.
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Note that, in particular, if P = {P0, P1, . . . , Pk−1} is alternating then |P0| =
|P1| = · · · = |Pk−1|.

In [1], Kano et al. considered alternating collections, and described construc-
tions of corresponding sets of trees for every k ≥ 3. These constructions yield
the following.

Proposition 4 (Kano et al. [1]) Let P = {P0, P1, . . . , Pk−1} be an alternat-
ing collection, where k ≥ 3 and n := | ∪k−1

i=0 Pi| ≥ 2k. Then there is a corre-
sponding set of trees Tc for P such that int(Tc) = (3k2/4−k)((n/k)−1)−k(k−
2)/4 if k is even, and int(Tc) = (3(k−1)2/4+(k−1)/2)((n/k)−1)− (k−1)2/4
if k is odd.

The constructions behind Proposition 4 are so natural that Kano et al. con-
jectured that they are best possible.

Conjecture 5 (Kano et al. [1]) Suppose that P satisfies the hypotheses of
Proposition 4, and let Tc be the corresponding set of trees for P given by Propo-
sition 4. Then, for any corresponding set of trees T for P, int(T ) ≥ int(Tc).

One of the central results in this paper is the proof of Conjecture 5 for k = 3
(and also for k = 4; see Theorems 8 and 9). For k = 3, Proposition 4 claims that
if P = {P0, P1, P2} is alternating, and n := |P0 ∪ P1 ∪ P2| ≥ 6, then there is a
corresponding set of trees Tc such that int(Tc) = (4/3)n− 5. Thus the following
statement settles Conjecture 5 for k = 3. The proof is in Section 2.

Theorem 6 Let P = {P0, P1, P2} be an alternating collection such that n :=
|P0 ∪ P1 ∪ P2| ≥ 6. Then, for any corresponding set of trees T for P, int(T ) ≥
(4/3)n− 5. Thus Conjecture 5 holds for k = 3.

Keeping in mind that the motivation behind Conjecture 5 was to search
for collections P for which any corresponding set of trees has large intersection
number, it is natural to ask if dropping the condition that P is alternating can
yield still better (or at least comparable) results.

That is, is there a (non alternating) collection P = {P0, P1, P2} for which
every corresponding set of trees T has int(T ) ≥ (4/3)|P0 ∪ P1 ∪ P2| − 5?

We pursued this question, and came out with a definite answer (for the proof
see Section 3).

Theorem 7 Let P = {P0, P1, P2} be a non alternating good collection such that
n := |P0 ∪P1 ∪P2| ≥ 6. Then there is a corresponding set of trees T for P such
that int(T ) < (4/3)n − 5.

Thus, if our interest lies (as it happens) in collections P such that int(T ) is
large for every corresponding set of trees T for P , then our best bet is to focus
on alternating collections.

What about alternating collections with k > 3? Our first result in this
regard is the following general statement, whose proof is in Section 4.
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Theorem 8 If Conjecture 5 holds for some k odd, then it also holds for k + 1.

In combination with Theorem 6, this immediately yields the following.

Theorem 9 Let P = {P0, P1, P2, P3} be an alternating collection such that
n := |P0 ∪ P1 ∪ P2 ∪ P3| ≥ 8. Then, for any corresponding set of trees T for P,
int(T ) ≥ 2n − 10. Thus Conjecture 5 holds for k = 4.

Theorem 6 also yields a nontrivial bound for alternating collections for all
other values of k.

Theorem 10 Let P = {P0, P1, . . . , Pk−1} be an alternating collection such that
k ≥ 3 and n := | ∪k−1

i=0 Pi| ≥ 2k. Then, for any corresponding set of trees T for
P, int(T ) ≥ (2/3)

[

(k − 1)n
]

− 5k(k − 1)/6.

This last statement follows from a standard counting argument from the
case k = 3. The proof is in Section 5.

We conclude this introductory section with the observation that Theorem 10
implies the tightness of Theorem 1 we claimed in Theorem 3.

Proof of Theorem 3. It follows immediately from Theorem 10.

2 Alternating three–coloured collections:

proof of Theorem 6

Since P is alternating, we may assume that the points in P = P0 ∪ P1 ∪ P2

are labelled so that P0 = {p0, p3, . . . , p3s−3}, P1 = {p1, p4, . . . , p3s−2}, and P2 =
{p2, p5, . . . , p3s−1}, in such a way that the points appear in the convex hull of
P in the cyclic order p0, p1, p2, . . . , p3s−1. Note that n ≥ 6 implies s ≥ 2.

We proceed by induction on s. The proof for s = 2 is straightforward.
Thus, we assume that the statement is true for s = t − 1, where t ≥ 3, and

consider the case s = t.
Let {T0, T1, T2} be a corresponding set of trees for {P0, P1, P2}. Our aim is

to show that the edges in T0 ∪ T1 ∪ T2 intersect at least (4/3)(3s)− 5 = 4s = 5
times.

A vertex in Pi is an i–vertex. An edge in Ti is an i–edge.
A crossing is an intersection of edges in T0 ∪ T1 ∪ T2.
Note that if every edge in T0 ∪ T1 ∪ T2 has at least 3 crossings, then the

total number of intersections in T0 ∪ T1 ∪ T2 is at least 3(3s)/2 > 4s − 5. By
relabelling the points in P if necessary (perhaps even reversing the cyclic order
of the points in P), we may assume that some 0–edge e0 has at most 2 crossings,
and, moreover, that the vertices incident with e0 are p0 and pj0 , with j0 ≥ 6.

It is readily checked that connectivity considerations (of the trees Ti) imply
that every 0–edge intersects at least one 1–edge and at least one 2–edge. We
therefore conclude that one of the crossings of e0 occurs with a 1–edge e1, and
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the other one with a 2–edge e2. Let pi1 , pj1 (respectively pi2 , pj2) denote the
end vertices of e1, labelled so that 0 < i1, i2 < j0 and j0 < j1, j2 < 3t − 1.

A crossing is internal if both edges involved in it belong to {e0, e1, e2}. A
crossing is external if it is not internal and it involves an edge in {e0, e1, e2}. A
crossing is good if it is either internal or external.

The following statement shows that, in order to take care of the inductive
step, it suffices to prove that e0, e1, e2 are involved in a sufficiently large number
of crossings.

Claim 11 In order to deal with the inductive step, it suffices to show that at
least one of the following conditions holds.

(i) e0, e1, e2 are incident with leaf vertices that appear consecutively in P, and
there are at least 4 good crossings.

(ii) There are at least 5 good crossings.

(iii) There are at least 4 good crossings, and e1, e2 are both incident with leaf
vertices.

Proof. Suppose that (i) holds. Remove e0, e1, and e2, and the consecutive leaves
in P that are incident with these edges. This removes at least 4 crossings, by
assumption. The result is a collection with 3(s−1) points to which the inductive
hypothesis can be applied, to obtain at least 4(s − 1) − 5 = 4s − 9 crossings.
These 4s − 9 crossings, together with the 4 crossings previously removed, yield
at least 4s − 5 crossings in T0 ∪ T1 ∪ T2, thus completing the inductive step.

Suppose now that (ii) holds. Suppose first that neither e1 nor e2 is incident
with a leaf vertex. Remove e1 and e2. This removes at least 5 crossings, since e0

by assumption only crosses e1 and e2. If we now contract e0 (along with all its
incident edges), collapsing p0 and pj0 and replacing them by a vertex placed in
any point of e0, we obtain two separate nonempty collections of points, of sizes
3s′ and 3s′′, with s′ + s′′ = s, to which the inductive hypothesis can be applied.
This yields at least (4s′ − 5) + (4s′′ − 5) = 4s − 10 crossings, which together
with the 5 crossings previously identified, give the 4s − 5 crossings required to
complete the inductive step.

Now suppose that either e1 or e2 is incident with a leaf vertex. It is readily
checked that then both e1 and e2 are incident with leaf vertices, and, moreover,
that pj0 , pj1 , pj2 appear consecutively in P (moreover, j2 = 3t − 1) , so that pj1

is the leaf vertex incident with e1 and pj2 is the leaf vertex incident with e2.
Hence in this case we might as well assume that (iii) holds. Thus we complete
the proof by analyzing the case in which (iii) holds.

Suppose finally that (iii) holds. Remove e1 and e2. This removes at least 4
crossings, since e0 only crosses e1 and e2. By contracting e0 (along with all its
incident edges), collapsing p0 and pj0 and replacing them by a vertex placed in
any point of e0, we obtain a collection of points, of size 3(s − 1) to which the
inductive hypothesis can be applied. This yields at least 4(s − 1) − 5 = 4s − 9
crossings, which together with the 4 crossings previously removed, give the 4s−5
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crossings required to complete the inductive step. This completes the proof of
Claim 11.

¿From Claim 11, it is clear that in order to establish the inductive step we
need to show that e0, e1, e2 are involved in sufficiently many crossings. Our next
statement shows that a large number of crossings is always guaranteed if the
end vertices of e0, e1, e2 appear in certain order.

Claim 12 Suppose that either (a) p0, pi2 , pi1 appear in P in the given order; or
(b) pj0 , pj2 , pj1 appear in P in the given order. Then there are at least 3 external
crossings.

Proof. We prove the statement under the assumption that (a) holds. The proof
for the case in which (b) holds is totally analogous.

Since pi2 cannot be an immediate successor of p0, it follows that there is
some 1–vertex p`1 such that 0 < `1 < i2. Similarly, there is some 0–vertex p`0

such that i2 < `0 < i1, and there is some 2–vertex p`2 such that i1 < `2 < j0.
The spanning property of T1, and the assumption that no 1–edge other than

e1 crosses e0, imply that there is a T1–path from p`1 to pi1 . This path must
clearly contain an edge (a 1–edge different from e1) that crosses e2. This provides
an external crossing. Similar arguments show that some 0–edge different from
e0 must cross either e1 or e2, (this provides another external crossing), and
that some 2–edge different from e2 must cross e1 (this provides a third external
crossing). This completes the proof of Claim 12.

We are finally ready to establish the inductive step. We analyze separately
two cases, depending on whether or not e1 and e2 cross each other.

Case 1 If e1 and e2 do not cross each other, then the inductive step follows.

By (ii) in Claim 11, it suffices to show that there are at least 5 good crossings.
Suppose first that i1 < i2. It is readily checked that in this case the as-

sumption that e1 and e2 do not cross each other implies that pj0 , pj2 , pj1 occur
in this order in P . Thus Claim 12 applies, and guarantees the required 5 good
crossings (3 external crossings plus 2 internal crossings). Finally, if i2 < i1, then
p0, pi2 , pi1 occur in this order in P , and again an application of Claim 12 gives
the required 5 good crossings. This completes the analysis for Case 1.

Case 2 If e1 and e2 cross each other, then the inductive step follows.

We claim that, in this case, it suffices to prove the following statements:

(1) There is at least 1 external crossing.

(2) If e0, e1, e2 are not incident with leaf vertices that appear consecutively in
P , then there are at least 2 external crossings.
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Indeed, suppose that (1) and (2) hold. Since e1 and e2 cross each other, then
there are 3 internal crossings. Thus, by (1), there are at least 4 good crossings. If
e0, e1, e2 are incident with leaf vertices that appear consecutively in P , this fact
together with (i) in Claim 11 imply that the inductive step follows. On the other
hand, if e0, e1, e2 are not incident with leaf vertices that appear consecutively
in P , then by (2) there are at least 5 good crossings, and so by (ii) in Claim 11
the inductive step follows.

Thus we finish the analysis of Case 2 (and thus the whole proof) by proving
(1) and (2).

Before proving these statements, we make a general observation. Since e1

and e2 cross, then the end vertices of e0, e1, e2 appear in P either in the order
p0, pi1 , pi2 , pj0 , pj1 , pj2 or in the order p0, pi2 , pi1 , pj0 , pj2 , pj1 . In the latter case,
Claim 12 applies, in which case both (1) and (2) follow.

Therefore for proving (1) and (2) we may assume that p0, pi1 , pi2 , pj0 , pj1 , pj2

appear in P in the given order.
One word on terminology. If pr, pt are vertices in P such that 0 ≤ r < t ≤

3t−1, then the segment [pr, pt] is the (possibly empty) set {pr+1, pr+2, . . . , pt−1}.

Proof of (1)

Note that, since j0 ≥ 6, it follows that at least one of the segments [p0, pi1 ],
[pi1 , pi2 ], [pi2 , pj0 ] is nonempty. Note that any such nonempty segment contains
at least one 0–vertex, one 1–vertex, and one 2–vertex. Suppose for instance
that [pi2 , pj0 ] is nonempty. Thus there is a 1–vertex p`1 such that i2 < `1 < j0.
The path in T1 that joins p`1 and pj1 must clearly cross e2. Thus, some 1–
edge other than e1 crosses e2. This provides an external crossing. A similar
argument shows that if [p0, pi1 ] is nonempty, then some 2–edge other than e2

crosses e1. Yet another application of the same argument shows that if [pi1 , pi2 ]
is nonempty, then some 0–edge other than e0 crosses either e1 or e2. Therefore,
in either case we obtain an external crossing, as required.

Proof of (2)

First we claim that if pj0 , pj1 , pj2 , p0 do not appear consecutively in P , then
there are at least 2 external crossings, in which case (2) immediately follows.

Suppose that pj0 , pj1 , pj2 , p0 do not appear consecutively in P , that is, one
of the segments [pj0 , pj1 ], [pj1 , pj2 ], [pj2 , p0] is nonempty. An argument totally
analogous to the one used in the proof of (1) shows that the nonemptiness of
any such segments guarantees the existence of an external crossing.

Thus, if pj0 , pj1 , pj2 , p0 do not appear consecutively in P , then there are
at least two external crossings. Indeed, the crossing identified in the previous
paragraph, plus the crossing obtained in the proof of (1), are clearly distinct.
Thus in this case we have the required 2 external crossings.

In view of (1) and this discussion, in order to complete the proof of (2) it
suffices to show the following: if pj0 , pj1 , pj2 , p0 appear consecutively in P , and
e0, e1, e2 are not incident with leaf vertices that appear consecutively in P , then
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then there are at least 2 external crossings. The rest of the proof is devoted to
show this statement.

First we observe that since pj0 , pj1 , pj2 , p0 appear consecutively in P , it fol-
lows that pj1 and pj2 are leaf vertices of e1 and e2, respectively. Thus the
assumption that e0, e1, e2 are not incident with leaf vertices that appear consec-
utively in P implies that e0 is not incident with leaf vertices. That is, neither
p0 nor pj0 is a leaf vertex.

Suppose that the segment [p0, pi1 ] is nonempty. Then it contains a 2–vertex,
and an argument analogous to the one used in the proof of (1) shows that this
implies that there is an external crossing of a 2–edge other than e2 with e1.

Similarly, if [pi2 , pj0 ] is nonempty, then it contains a 1–vertex, and so there
is an external crossing of a 1–edge other than e1 with e2. By a similar token,
if [pi1 , pi2 ] is nonempty, then it contains a 0–vertex, and so there is an external
crossing of a 0–edge other than e0 with either e1 or e2.

These arguments show that if at least two of the segments [p0, pi1 ], [pi1 , pi2 ],
[pi2 , pj0 ] are nonempty, then there are at least 2 external crossings, as required.

Thus for the rest of the proof we assume that exactly one of the segments
[p0, pi1 ], [pi2 , pj0 ], [pi1 , pi2 ] is nonempty.

Suppose that [p0, pi1 ] is nonempty and both [pi1 , pi2 ] and [pi2 , pj0 ] are empty.
Then [p0, pi1 ] must contain some 0–vertex. Moreover, [p0, pi1 ] must contain
some 0–vertex that is connected to pj0 via a T0–path that does not contain p0,
as otherwise pj0 would be a leaf. This implies that some 0–edge other than e0

crosses both e1 and e2. This provides the two required external crossings.
An analogous argument takes care of the case in which [pi2 , pj0 ] is nonempty

and both [p0, pi1 ] and [pi1 , pi2 ] are empty.
Thus we finish the proof by dealing with the case in which [pi1 , pi2 ] is

nonempty and both [p0, pi1 ] and [pi2 , pj0 ] are empty. In this case, [pi1 , pi2 ]
must contain a 0–vertex connected to p0 via a T0–path that does not contain
pj0 , as otherwise p0 would be a leaf. For a similar reason, [pi1 , pi2 ] must contain
a 0–vertex connected to pj0 via a T0–path that does not contain p0. One of
these paths must cross e1, and the other one must cross e2. This gives the two
required external crossings.

3 Non alternating three–coloured collections:

proof of Theorem 7

The heart of the proof of Theorem 7 is the following statement.

Proposition 13 Let P = {P0, P1, P2} be a good collection of point sets such
that P0∪P1∪P2 is in convex position, |P0| ≤ |P1| ≤ |P2|, and n := |P0∪P1∪P2| ≥
6. Suppose further that P is not alternating. Then there is a corresponding set
of trees T for P such that int(T ) < (4/3)n− 5.

Note that Theorem 7, whose proof is the goal of this section, is an immediate
consequence of Proposition 13.
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Proof of Theorem 7. It follows from Proposition 13: by relabelling P0, P1, P2,
if necessary, it can be assumed without loss of generality that |P0| ≤ |P1| ≤ |P2|,
so that Proposition 13 applies.

The rest of this section is thus devoted to the proof of Proposition 13.

Proof of Proposition 13. For the sake of clarity, we break the proof into four
steps.

Step 1 Construction of a corresponding set of trees T = {T0, T1, T2} for
P = {P0, P1, P2}, given a starting point p0 ∈ P0.

Let p0 be any point in P0 (we call p0 the starting point of the construction).
Label the points of P := P0 ∪ P1 ∪ P2 as p0, p1, . . . , pn−1, so that the pi’s occur
in the given clockwise cyclic order in the convex hull of P . For r = 1, 2, let ir

be the least integer such that pir
is in Pr, and let jr be the largest integer such

that pjr
is in Pr .

For r = 1, 2, let Cr denote the convex polygon with vertex set Pr. The
convexity of C1 and C2 implies that each edge of C1 intersects at most twice
(the edges in) C2.

Let T1 be the tree (moreover, path) that results from removing from C1 the
edge pi1pj1 . Similarly, let T2 be the tree (path) that results from removing from
C2 the edge pi2pj2 . Finally, let T0 be the star whose vertex set is P0, and whose
vertex of degree |P0| − 1 is p0.

Clearly, T := {T0, T1, T2} is a corresponding set of trees for P .

Step 2 int(T ) ≤ (4/3)n − 5, independently of the choice of the point p0.

Let α denote the number of edges of T1 that intersect at most one edge
of T2. Thus, the number of intersections among edges in T1 ∪ T2 is at most
2(|P1| − 1) − α. If α = 0, then each edge of T1 intersects exactly two edges in
T2, and so in this case |P2| ≥ |P1| + 1.

From the construction of T0, T1, and T2 it follows that each edge of T0 crosses
at most one edge of T1 and at most one edge of T2. Therefore the number of
intersections of edges that involve an edge in T0 is at most 2(|P0| − 1).

Hence, int(T ) ≤ 2(|P1| − 1) − α + 2(|P0| − 1) = 2(|P0| + |P1|) − (α + 4).
Thus, to complete Step 1 it suffices to show that 2(|P0| + |P1|) − (α + 4) ≤

(4/3)n− 5.
We remark that n = |P0| + |P1| + |P2|.
We claim that strict inequality holds if either (i) |P0| ≤ |P2|−2 or (ii) α = 0.
For suppose that |P0| ≤ |P2| − 2. Then, s ince |P1| ≤ |P2|, it follows that

|P0|+ |P1| ≤ 2|P2|−2. A straightforward manipulation shows that then 2(|P0|+
|P1|) − (α + 4) < (4/3)(|P0| + |P1| + |P2|) − 5.

Now suppose that α = 0. Then |P2| ≥ |P1| + 1. On the other hand, since
|P0| ≤ |P1|, and |P2| − |P0| ≤ 1, it follows that |P2| − 1 = |P0| = |P1|. A
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straightforward manipulation then yields the strict inequality 2(|P0| + |P1|) −
(α + 4) < (4/3)(|P0| + |P1| + |P2|) − 5.

Thus either we have strict inequality or |P2| − |P0| ≤ 1 and α = 0.
It remains to check the case α ≥ 1, that is, −(α + 4) ≤ −5. It is an

easy observation that 2(|P0| + |P1|) ≤ (4/3)(|P0| + |P1| + |P2|), and so a trivial
manipulation shows that 2(|P0|+ |P1|)− (α + 4) ≤ (4/3)(|P0|+ |P1|+ |P2|)− 5.

Step 3 If |P0| < |P2|, then int(T ) < (4/3)n − 5, independently of the choice
of the point p0.

Suppose that |P0| < |P2|. From the case analysis above, it follows that
int(T ) ≤ (4/3)n − 5, and equality can hold only if |P2| − |P0| ≤ 1 and α ≥ 1.
Thus either strict inequality holds (in which case Step 3 is done) or we can
assume |P0| < |P2|, |P2| − |P0| ≤ 1, and α ≥ 1. But then 2(|P0|+ |P1|) < 4|P2|,
and −(α+4) ≤ −5. These readily imply that 2(|P0|+|P1|)−(α+4) < (4/3)n−5.

Step 4 After relabelling P0, P1, P2, if necessary, there is a choice of the starting
point p0 such that the constructed T = {T0, T1, T2} satisfies int(T ) < (4/3)n−5.

First we note that, by Step 3, we may assume that |P0| = |P2|. Since
|P0| ≤ |P1| ≤ |P2| by assumption, it follows that |P0| = |P1| = |P2|.

It is easy to check that, since {P0, P1, P2} is not alternating and |P0| =
|P1| = |P2|, then either (i) there are two points p, q in the same Pi that appear
consecutively in the convex hull of P ; or (ii) there are points p, q, r that appear
consecutively in the convex hull of P (in this clockwise order), such that p and
r belong to the same Pi and q belongs to a Pj 6= Pi. We examine these cases
separately.

Suppose that (i) holds. By relabelling P0, P1, P2 if necessary, we may as-
sume that p, q ∈ P0. Thus we set p0 = p (this implies p1 = q), and obtain a
corresponding set of trees T = {T0, T1, T2}. Recall that the number of inter-
sections of edges of T1 with edges of T2 is at most 2(|P1| − 1), and that each
edge of T0 is crossed at most twice. Since the edge p0p1 intersects no edge,
it follows that T0 has at most 2(|P0| − 2) intersections with edges in T1 ∪ T2,
and so int(T ) ≤ 2(|P0| + |P1|) − 6 = 4|P0| − 6. Since |P0| = n/3, we obtain
int(T ) ≤ (4/3)n − 6 < (4/3)n− 5, as required.

Suppose finally that (ii) holds. By relabelling P0, P1, P2 if necessary, we may
assume that q ∈ P0 and p, r ∈ P1. We thus proceed to construct T = {T0, T1, T2}
with the starting point p0 = q.

An easy counting argument shows that there is an edge of T1 that intersects
no edge of T2, so that there are at most 2(|P1|−2) intersections between T1 and
T2. On the other hand, the edges of T0 have at most 2(|P0| − 1) intersections
with the edges of T1 ∪ T2, and so int(T ) ≤ 2(|P0| + |P1|) − 6 = 4|P0| − 6. Since
|P0| = n/3, we obtain int(T ) ≤ (4/3)n− 6 < (4/3)n− 5, as required.
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4 Parity issues of Conjecture 5:

proof of Theorem 8

Let k ≥ 3 be an odd integer. We assume that Conjecture 5 holds for k, and will
show that it follows that it also holds for k + 1.

Let P = {P0, P1, . . . , Pk} be an alternating collection, where k + 1 is even
(note that P has k + 1 point sets Pi), and let T = {T0, T1, . . . , Tk} be a corre-
sponding set of trees.

We need to show that the edges in T0 ∪ T1 ∪ · · · ∪ Tk−1 intersect in at least
(3k2/4− k)((n/k) − 1) − k(k − 2)/4 points.

Since by assumption Conjecture 5 holds for k, it follows that, for each i ∈
{0, . . . , k}, the edges in (T0 ∪ · · · ∪ Tk) \ {Ti} intersect at least (3(k − 1)2/4 +
(k − 1)/2)(((n/k) − 1) − (k − 1)2/4 times.

An elementary counting argument then shows that the edges in T0 ∪ · · ·∪Tk

intersect at least
(

k+1
k

)[

((3(k−1)2/4+(k−1)/2)((n/k)−1)− (k−1)2/4)
]

/(k−
2) times. A straightforward manipulation shows that this number is exactly
(3(k + 1)2/4 − (k + 1))((n/k) − 1) − (k + 1)((k + 1) − 2)/4, as required.

5 Multicoloured alternating collections:

proof of Theorem 10

Let P = {P0, P1, . . . , Pk−1} be alternating, where k > 3. Let Pr1
, Pr2

, Pr3
be

any three distinct collections of P . By Theorem 6, there are at least (4/3)(3n/k)
−5 intersections that involve only edges in Tr1

∪ Tr2
∪ Tr3

.
Since there are

(

k

3

)

ways to choose such Pr1
, Pr2

, Pr3
, an elementary counting

argument shows that the total number of intersections of edges in T0∪T1∪· · ·∪
Tk−1 is at least

(

k

3

)

(4/3)(3n/k)− 5

k − 2

(here we divide by k−2 since each Pr is in k−2 different 3–collections {Pr1
, Pr2

,
Pr3

}, so that each intersection gets overcounted k − 2 times).
A trivial manipulation shows that this expression equals (2/3)(k − 1)n −

5k(k − 1)/6, as claimed.

6 Concluding Remarks

As we mentioned in Section 1, the analysis of good collections whose union
is in general position is motivated by the drive to test the tightness of Theo-
rem 1. Our Theorem 7 then shows that our best bet is to focus on alternating
collections.

For alternating collections, Kano et al. put forward a general conjecture,
namely Conjecture 5. In this paper we have settled this conjecture for k = 3
and 4. Naturally, the next step would be to try to settle the conjecture for
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larger values of k, aiming in the process to gain some insight into the general
problem.

Proving Conjecture 5 true for larger values of k would automatically imply
a better tightness estimate for Theorem 1. However, one must keep in mind
that even settling Conjecture 5 for every k would not imply that Theorem 1 is
(asymptotically) tight for each k. This approach to the problem of testing the
tightness of Theorem 1 has a natural limit (namely a factor of 4/3), as the next
result shows.

Theorem 14 Suppose that Conjecture 5 is true for some odd integer k0 ≥ 3.
Then, for every fixed k ≥ k0, the bound in Theorem 1 is asymptotically within
a factor of 4k0/(3k0 − 1) from the optimal solution.

The proof of this statement is a straightforward counting argument.
Theorem 14 suggests that as a next step it makes sense to combine an effort

to prove Conjecture 5 for k ≥ 5 with an attempt to improve on Theorem 1.
This last direction would very likely include a further exploration on the case
in which the set P0 ∪ P1 ∪ · · · ∪ Pk−1 is not necessarily in convex position.
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