Cambiar a contenido. | Saltar a navegación

Herramientas Personales


Some remarks on the Nehari-Pankov manifold

Ponente: Andrzej Szulkin
Institución: Universidad de Estocolmo
Tipo de Evento: Investigación
Cuándo 20/10/2016
de 11:00 a 12:00
Dónde Salón 1
Agregar evento al calendario vCal
We study the Schrödinger equations $-\Delta u + V(x)u = f(x,u)$ in $\mathbb{R}^N$ and $-\Delta u - \lambda u = f(x,u)$ in a bounded domain $\Omega\subset\mathbb{R}^N$. We assume that $f$ is superlinear but of subcritical growth and $u\mapsto f(x,u)/|u|$ is nondecreasing. In $\mathbb{R}^N$ we also assume that $V$ and $f$ are periodic in $x_1,\ldots,x_N$. We show that these equations have a ground state and also briefly discuss existence of infinitely many solutions if $f$ is odd in $u$. Our results generalize older ones where $u\mapsto f(x,u)/|u|$ was assumed to be strictly increasing. This seemingly small change forces us to go beyond methods of smooth analysis.
This is joint work with Francisco Odair de Paiva and Wojciech Kryszewski.