Con el fin de dar mantenimiento al equipo que alberga el portal del IM, NO habrá servicio durante los siguientes días y horarios:
  • Lunes 7, martes 8 y miércoles 9 de julio de 2025, de las 09:00 Hrs. a las 15:00 Hrs.
UNAM
You are here: Home / Actividades académicas / Coloquios / Coloquio de Ciudad Universitaria / Actividades del Coloquio / On non-vanishing of the cohomology of \(\mathrm{Aut}(F_n)\) and \(\mathrm{Out}(F_n)\) in top dimensions

On non-vanishing of the cohomology of \(\mathrm{Aut}(F_n)\) and \(\mathrm{Out}(F_n)\) in top dimensions

Ponente: Damien Gaboriau
Institución: École Normale Supérieure de Lyon, Francia

When Jan 29, 2019
from 12:00 PM to 01:00 PM
Where Auditorio "Alfonso Nápoles Gándara"
Add event to calendar vCal
iCal

Few results are know about the \(L^2\)-Betti numbers of \(\mathrm{Aut}(F_n)\) and \(\mathrm{Out}(F_n)\), the groups of automorphisms (resp. outer automorphisms) of the free group \(F_n\). Their virtual geometric dimension (smallest dimension of a \(K(G,1)\) for torsion-free finite index subgroups) are \(2n-2\), resp. \(2n-3\). I shall show that the top-dimensional \(L^2\)-Betti numbers of \(\mathrm{Aut}(F_n)\) and  \(\mathrm{Out}(F_n)\) do not vanish.

By Lück approximation theorem, this implies that these groups admit finite index subgroups with non-vanishing top-dimensional  rational cohomology; in fact the usual Betti numbers for finite index subgroups grow linearly with the index.

I will review the basics of the theory and stay at an elementary level.

Filed under: