Métricas de curvatura escalar constante: ecuación e invariante de Yamabe
Ponente: Jimmy Petean
Institución: CIMAT, Guanajuato
Institución: CIMAT, Guanajuato
Cuándo |
09/09/2014 de 12:00 a 13:00 |
---|---|
Dónde | Auditorio "Alfonso Nápoles Gándara" |
Agregar evento al calendario |
vCal iCal |
Resumen:
El clásico teorema de uniformización dice que toda superficie es conforme a una de curvatura de Gauss constante. La generalización a dimensiones más altas es el problema (resuelto) de Yamabe: toda variedad Riemanniana cerrada es conforme a una con curvatura escalar constante. Esto es equivalente a demostrar la existencia de soluciones a la ecuación de Yamabe, y se resuelve probando que siempre existe una solución que minimiza la energía. De aquí surgen 2 problemas fundamentales que serán el tema de la conferencia: problemas de multiplicidad de soluciones a la ecuación de Yamabe y la ''geometrización'' de la variedad maximizando la energía de soluciones minimizantes (el invariante de Yamabe).