Usted está aquí: Inicio / Seminarios / Seminario de Representaciones de Álgebras / Actividades del Seminario de Representaciones de Álgebras / Homological mirror symmetry for log Calabi-Yau surfaces

Homological mirror symmetry for log Calabi-Yau surfaces

Ponente: Ailsa Keating
Institución: University of Cambridge
Tipo de Evento: Investigación, Formación de Recursos Humanos
Cuándo 23/10/2020
de 10:15 a 11:15
Dónde https://www.him.uni-bonn.de/programs/current-trimester-program/new-trends-in-representation-theory/new-trends-in-representation-theory-school/
Agregar evento al calendario vCal
iCal

Homological mirror symmetry for log Calabi-Yau surfaces

 

Given a log Calabi-Yau surface Y with maximal boundary D, I’ll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I’ll explain how to relate this to the total space of the SYZ fibration predicted by Gross–Hacking–Keel, and, time permitting, explain ties with earlier work of Auroux–Katzarkov–Orlov and Abouzaid. Joint work with Paul Hacking.

NOTA: Esta charla es parte de la Escuela de Invierno "Connections between representation theory and geometry" que del 5 al 23 de octubre de 2020 tendrá lugar virtualmente en el Hausdorff Research Institute for Mathematics (HIM) de Bonn, Alemania, organizada por Jenny August, Sondre Kvamme, Daniel Labardini-Fragoso y Alexandra Zvonareva. Si quieres asistir, por favor visita la página web de la Escuela de Invierno e inscríbete.