Cluster configuration spaces of finite type

Ponente: Thomas Lam
Institución: University of Michigan
Tipo de Evento: Investigación
Cuándo 20/10/2020
de 10:00 a 11:00
Dónde https://paginas.matem.unam.mx/ocas
Agregar evento al calendario vCal
iCal

Cluster configuration spaces of finite type

 

I will talk about a "cluster configuration space" M_D, depending on a finite Dynkin diagram D. The space M_D is an affine algebraic variety that is defined using only the compatibility degree of the corresponding finite-type cluster algebra. In the case that D is of type A, we recover the configuration space M_{0,n} of n (distinct) points in P^1. There are many relations to finite-type cluster theory, but an especially close connection to the finite-type cluster algebra with universal coefficients.

This talk is based on joint works with Nima Arkani-Hamed, Song He, and Hugh Thomas.

NotaEsta charla es parte del Online Cluster Algebra Seminar organizado por Anna Felikson, Michael Gekhtman, Daniel Labardini-Fragoso, Kyungyong Lee, Pierre-Guy Plamondon, Ralf Schiffler y Khrystyna Serhiyenko.