Cambiar a contenido. | Saltar a navegación

Herramientas Personales


Magnetic trajectories in Sasakian and cosymplectic manifolds

Marian Ioan Munteanu (University of Iasi in Romania) Jueves 7 de Nov-13:00 hrs
Cuándo 07/11/2013
de 13:00 a 14:00
Dónde Salon de Seminarios Graciela Salicrup
Agregar evento al calendario vCal

We investigate the trajectories of charged particles moving in a space modeled by the 3-space M2(c) x R under the action of the Killing magnetic fields. One explicitly determines all magnetic curves corresponding to the Killing magnetic fields on the 3-dimensional Euclidean space (c=0). See [1]. We give the local description of the magnetic trajectories associated to Killing vector fields in S2 x R, providing their complete classification (c=1). Moreover, some interpretations in terms of geometric properties are given. See [2]. Then, the geometry of normal magnetic curves in a Sasakian (respectively cosymplectic) manifold of arbitrary dimension is explained. Some results about the reduction of the codimension of a normal magnetic curve in a Sasakian space form are given. See [3].

This talk is based on the following joint papers:

[1] S.L. Druta-Romaniuc, M.I. Munteanu, Magnetic curves corresponding to

Killing magnetic fields in E3, J. Math. Phys. 52 (11) (2011), art. no. 113506.

[2] M.I. Munteanu, A.I. Nistor, The classification of Killing magnetic curves in S2 x R, J. Geom. Phys. 62 (2) (2012), 170 - 182.

[3] S.L. Druta-Romaniuc, J. Inoguchi, M.I. Munteanu, A.I. Nistor, Magnetic curves in Sasakian and cosymplectic manifolds, submitted.