Cambiar a contenido. | Saltar a navegación

Herramientas Personales
Entrar

Navegación

Usted está aquí: Inicio / Actividades / Seminarios / Seminario de Procesos Estocasticos / Actividades del Seminario de Procesos Estocasticos / Cambios de tiempo y la difusión de Wright-Fisher

Cambios de tiempo y la difusión de Wright-Fisher

Adrián González-Casanova (Berlin Mathematical School), Mie 7 Sep, 15h30, Aula 1
Ponente:
Cuándo 07/09/2011
de 15:30 a 15:30
Dónde Aula 1, Instituto de Matemáticas, CU
Nombre
Agregar evento al calendario vCal
iCal
Consideremos una población de N individuos. Ahora considera una nueva generación de N individuos, tal que cada miembro de la segunda generación tiene a su padre en la primera generación. Cada individuo en la segunda generación "elige" a su padre de manera uniforme entre los individuos de la primera generación. Si iteramos ésta idea, para formar muchas generaciones, lo que obtenemos es el modelo clásico de deriva genética de Wright Fisher. El modelo es útil y sabemos prácticamente todo sobre él, sin embargo, puede ser generalizado de muchas maneras. Algunas de las técnicas que debemos usar para estudiar este nuevo modelo son cadenas de Markov, medidas de Gibbs, y cambios de tiempo. Mostraremos una idea preliminar utilizando cambios de tiempo para estudiar este proceso. Mediante la representación de la difusión de Wright-Fisher como un Movimiento Browniano cambiado de tiempo, encontraremos el cambio de tiempo asociado al modelo de Moran discreto asociado. Finalmente propondremos como la generalización de esta idea preliminar nos permitiría poder definir a la difusión de Wright-Fisher fraccionaria como un Movimiento Browniano fraccionario cambiado de tiempo a partir de sus versiones discretas.