Omar Antolín Camarena
Table of Contents
Página web en español.
About me
I’m a researcher at Instituto de Matemáticas, UNAM^{1} in Mexico City. You can email me at omar@matem.unam.mx. Before working here, I was a postdoc at UBC in Vancouver, and before that I studied a PhD at Harvard where my advisor was Jacob Lurie.
This is my CV and these^{2} are my articles on the arXiv.
I’m interested in homotopy theory, higher category theory, derived algebraic geometry and combinatorics.
Research
Algebraic Topology
The Complex of Affinely Commutative Sets with Bernardo Villarreal.
We show that for some classes of groups \(G\), the homotopy fiber \(E_{\mathrm{com}} G\) of the inclusion of the classifying space for commutativity \(E_{\mathrm{com}} G\) into the classifying space \(BG\), is contractible if and only if \(G\) is abelian. We show this both for compact connected Lie groups and for discrete groups. To prove those results, we define an interesting map \(\mathfrak{c} \colon E_{\mathrm{com}} G \to B[G,G]\) and show it is not nullhomotopic for the nonabelian groups in those classes. Additionally, we show that \(\mathfrak{c}\) is 3connected for \(G=O(n)\) when \(n \ge 3\).
Classifying spaces for commutativity of lowdimensional Lie groups with Simon Gritschacher and Bernardo Villarreal.
For each of the groups \(G = O(2), SU(2), U(2)\), we compute the integral and \(\mathbb{F}_2\)cohomology rings of \(B_\text{com} G\) (the classifying space for commutativity of \(G\)), the action of the Steenrod algebra on the mod 2 cohomology, the homotopy type of \(E_\text{com} G\) (the homotopy fiber of the inclusion \(B_\text{com} G \to BG\)), and some lowdimensional homotopy groups of \(B_\text{com} G\).
The mod 2 homology of free spectral Lie algebras.
The Goodwillie derivatives of the identity functor on pointed spaces form an operad \(\partial_{\ast}(\mathrm{Id})\) in spectra. Adapting a definition of Behrens, we introduce mod 2 homology operations for algebras over this operad and prove these operations account for all the mod 2 homology of free algebras on suspension spectra of simplyconnected spaces.
Nilpotent \(n\)tuples in \(SU(2)\) with Bernardo Villarreal.
We describe the connected components of the space \(\mathrm{Hom}(\Gamma,SU(2))\) of homomorphisms for a discrete nilpotent group \(\Gamma\). The connected components arising from homomorphisms with nonabelian image turn out to be homeomorphic to \(\mathbb{RP}^3\). We give explicit calculations when \(\Gamma\) is a finitely generated \emph{free nilpotent} group. In the second part of the paper we study the filtration \(B_{\text{com}} SU(2)=B(2,SU(2))\subset\cdots \subset B(q,SU(2))\subset\cdots\) of the classifying space \(BSU(2)\) (introduced by Adem, Cohen and TorresGiese), showing that for every \(q\geq 2\), the inclusions induce a homology isomorphism with coefficients over a ring in which 2 is invertible. Most of the computations are done for \(SO(3)\) and \(U(2)\) as well.
A simple universal property of Thom ring spectra with Tobias Barthel.
We give a simple universal property of the multiplicative structure on the Thom spectrum of an \(n\)fold loop map, obtained as a special case of a characterization of the algebra structure on the colimit of a lax \(\mathcal{O}\)monoidal functor. This allows us to relate Thom spectra to \(\mathbb{E}_n\)algebras of a given characteristic in the sense of Szymik. As applications, we recover the Hopkins–Mahowald theorem realizing \(H\mathbb{F}_p\) as a Thom spectrum, and compute the topological Hochschild homology and the cotangent complex of various Thom spectra.
Chromatic fracture cubes with Tobias Barthel.
In this note, we construct a general form of the chromatic fracture cube, using a convenient characterization of the total homotopy fiber, and deduce a decomposition of the \(E(n)\)local stable homotopy category.
Corrigendum to “Groupoids, the PhragmenBrouwer Property, and the Jordan Curve Theorem”, J. Homotopy and Related Structures 1 (2006) 175183 with Ronald Brown.
I pointed out a small gap in Ronald Brown’s proof of the Jordan Curve Theorem, related to the Phragmen–Brouwer Property; this note gives the correction in terms of a result on a pushout of groupoids, and some additional background.
Topology applied to Physics
Crystallographic Interacting Topological Phases and Equvariant Cohomology: To assume or not to assume with Daniel Sheinbaum.
For symmorphic crystalline interacting gapped systems we derive a classification under adiabatic evolution. This classification is complete for nondegenerate ground states and only partial in the degenerate case. We do not assume an emergent relativistic field theory nor that phases form a topological spectrum. Using a slightly generalized Bloch decomposition (without quasiparticles) and Grassmanians made out of ground state spaces, we show that the \(P\)equivariant cohomology of a \(d\)dimensional torus gives rise to different interacting phases. We discuss the relation of our assumptions to those made for crystallographic SPT and SET phases.
Topology of Fermi Surfaces and Anomaly Inflows with Alejandro Adem, Gordon W. Semenoff, Daniel Sheinbaum.
We derive a rigorous classification of topologically stable Fermi surfaces of noninteracting, discrete translationinvariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems with Bornvon Karman boundary conditions it is shown that there can only be topologically unstable Fermi surfaces. For systems on a halfspace and with a gapped bulk, our derivation naturally yields a Ktheory classification. Given the (d−1)dimensional surface Brillouin zone \(X_s\) of a ddimensional halfspace, our result implies that different classes of globally stable Fermi surfaces belong in \(K^{−1}(X_s)\) for systems with only discrete translationinvariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for \(d=2\). Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.
Combinatorics
Nilspaces, nilmanifolds and their morphisms with Bálazs Szegedy.
Recent developments in ergodic theory, additive combinatorics, higher order Fourier analysis and number theory give a central role to a class of algebraic structures called nilmanifolds. In the present paper we continue a program started by Host and Kra. We introduce nilspaces as structures satisfying a variant of the HostKra axiom system for parallelepiped structures. We give a detailed structural analysis of abstract and compact topological nilspaces. Among various results it will be proved that compact nilspaces are inverse limits of finite dimensional ones. Then we show that finite dimensional compact connected nilspaces are nilmanifolds. The theory of compact nilspaces is a generalization of the theory of compact abelian groups. This paper is the main algebraic tool in the second authors approach to Gowers’s uniformity norms and higher order Fourier analysis.
Positive graphs with Endre Csóka, Tamás Hubai, Gábor Lippner, László Lovász.
We study “positive” graphs that have a nonnegative homomorphism number into every edgeweighted graph (where the edgeweights may be negative). We conjecture that all positive graphs can be obtained by taking two copies of an arbitrary simple graph and gluing them together along an independent set of nodes. We prove the conjecture for various classes of graphs including all trees. We prove a number of properties of positive graphs, including the fact that they have a homomorphic image which has at least half the original number of nodes but in which every edge has an even number of preimages. The results, combined with a computer program, imply that the conjecture is true for all graphs up to 9 nodes.
Computational Mathematics
Computing arithmetic invariants for hyperbolic reflection groups with Gregory R. Maloney, Roland K. W. Roeder.
We describe a collection of computer scripts written in PARI/GP to compute, for reflection groups determined by finitevolume polyhedra in \(\mathbb{H}^3\), the commensurability invariants known as the invariant trace field and invariant quaternion algebra. Our scripts also allow one to determine arithmeticity of such groups and the isomorphism class of the invariant quaternion algebra by analyzing its ramification. We present many computed examples of these invariants. This is enough to show that most of the groups that we consider are pairwise incommensurable. For pairs of groups with identical invariants, not all is lost: when both groups are arithmetic, having identical invariants guarantees commensurability. We discover many “unexpected” commensurable pairs this way. We also present a nonarithmetic pair with identical invariants for which we cannot determine commensurability.
Talks (most in Spanish)
Slides
I don’t normally use slides…
 Las consecuencias de que las curvas tengan siempre cero o dos extremos: Una introducción a la Topología Diferencial. Coloquio de Orientación Matemática, FCUNAM. PDF
 Espacios de Thom desde el punto de vista categórico, LI Congreso SMM, Villahermosa Tabasco. PDF
 Homotopía Motívica: Mezclando geometría algebraica con teoría de homotopía, talk for undergraduates, in Spanish. PDF
 Conmutatividad en Grupos de Lie, Coloquium style talk in Spanish. HTML PDF
Videos
 Classifying spaces for commutativity
 A space that measures the lack of commutativity in a group, Samuel Gitler conference 2019
 The commutativity hierarchy, Tercer Coloquio de Categorías, Álgebra y Temas Afines
 Thom ring spectra and orientations, ∞Categories, ∞Operads, and their Applications, Casa Matemática Oaxaca, May 2018.
Maybe these can help you learn Spanish:
 Topología de superficies de Fermi
 Todas las formas de medir un conjunto convexo
 Mezclando geometría algebraica con teoría de homotopía: Homotopía Motívica, part of Perspectivas recientes en Geometría Algebraica.
 La serie de Taylor de un funtor topológico
 Primeros ejemplos en el Cálculo de Variaciones
 Óperads en topología y álgebra
 Teoría homotópica básica desde el punto de vista (∞,1)categórico
 Espacios clasificantes conmutativos y nilpotentes de grupos de Lie
 ¿Se puede dividir un cuadrado en un número impar de triángulos de igual área?
Expository writing
Something to read right here in the browser:
 Notes and mathematical short stories.
 Things I was surprised to learn are false.
 Iteration of rational maps, also available in PDF. This is my minor thesis^{3}, it includes fairly complete proofs of Sullivan’s No Wandering Domains theorem and the classification of the periodic Fatou components and is, I hope, fairly light reading.
Expository papers (PDFs)
A Whirlwind Tour of the World of (∞,1)categories.
This introduction to higher category theory is intended to a give the reader an intuition for what (∞,1)categories are, when they are an appropriate tool, how they fit into the landscape of higher category, how concepts from ordinary category theory generalize to this new setting, and what uses people have put the theory to. It is a rough guide to a vast terrain, focuses on ideas and motivation, omits almost all proofs and technical details, and provides many references.
On a Theorem of Kas and Schlessinger with Sarah Koch.
This is an expository paper about Kas and Schlessinger’s construction of a versal deformation space for an analytic space which is locally a complete intersection. This result has a distinct algebrogeometric flavor, but we do not assume any familiarity with concepts from algebraic geometry such as flatness or nonreducedness. In fact, we hope this paper can serve as an introduction to these ideas for geometers dealing with analytic spaces.

The version of the van Kampen theorem for the fundamental groupoid and applications, including Ronnie Brown’s neat proof of the Jordan curve theorem.
Matroides Críticamente Conexos.
My undegraduate thesis (in Spanish).
Teaching
In Spanish
 Posgrado en Ciencias Matemáticas, semestre 20211, Teoría de Homotopía.
 FCUNAM, semestre 20211, Topología Diferencial.
 FCUNAM, semestre 20201, Álgebra Lineal I
 FCUNAM, semestre 20201, Conjuntos Convexos
 Posgrado en Ciencias Matemáticas, semestre 20192, Teoría de ∞categorías.
 Posgrado en Ciencias Matemáticas, semestre 20191, Cálculos con sucesiones espectrales.
IMATEUNAM en CU, semestre 20182, Minicurso de Geometría Algebraica Derivada
 FCUNAM, Seminario de Topología A, semestre 20182: Grupoides en Topología.
Earlier Teaching Materials
In the spring of 2012, I taught a tutorial about the fundamental groupoid called Groupoids in Topology.
For a combined precalculus/calculus course called Math Ma, I wrote a couple of interactive webpages using the brilliant JXSGraph library:
 Bottle calibrator. You can draw the profile of a flask by dragging or adding points on a curve and see in realtime the graph of the height reached by some liquid poured in the flask as a function its volume.
 Secant line animation. Yet another version of the classical secant line animation. You can specify your own function.
Links
 Some of my favorite mathematicians.
 Top of the line lecture notes on various topics taken by Akhil Mathew, Anton Geraschenko, Chris SchommerPries, and Chao Li.
UNAM is the National Autonomous University of Mexico.
For some reason a direct search doesn’t turn up all of them.
This an excellent program requirement: a chance to make a fool of yourself in writing by producing an exposition of a topic outside your field of expertise in a limited amount of time. I loved it! All math departments should have this.